A091350 First occurrence (*2) of n in A088627 - or - least number that yields n different primes if you factorize it in all possible ways in two factors and add these factors.
8, 2, 6, 90, 30, 390, 690, 420, 210, 4290, 3990, 8778, 2310, 3570, 4830, 11550, 38850, 84630, 66990, 79170, 39270, 30030, 51870, 46410, 43890, 111930, 163020, 221340, 419430, 131670, 1902810, 1385670, 1009470, 1452990, 746130, 903210, 570570, 1067430, 1531530
Offset: 0
Keywords
Examples
Sequence A088627 starts with 1,1,2,0, meaning that 2 and 4 yield 1 prime, 6 yields 2 and 8 yields 0 primes; therefore a(0) = 8, a(1) = 2 and a(2) = 6.
Links
- T. D. Noe and Donovan Johnson, Table of n, a(n) for n = 0..257 (terms up to a(90) from T. D. Noe)
- M. Engelhardt, Number of Primes arising as Sum of a Factorization.
Crossrefs
Cf. A088627.
Programs
-
Java
// Programs available from Matthias Engelhardt.
-
Mathematica
DivPrimes[n_Integer] := Length[Select[Union[Divisors[n]+Reverse[Divisors[n]]], PrimeQ]]; nn=40; t=Table[0,{nn}]; cnt=0; k=0; While[cnt
T. D. Noe, Aug 02 2010 *)
Extensions
Extended by T. D. Noe, Aug 02 2010
Comments