A091351 Triangle T, read by rows, such that T(n,k) equals the (n-k)-th row sum of T^k, where T^k is the k-th power of T as a lower triangular matrix.
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 9, 4, 1, 1, 24, 30, 16, 5, 1, 1, 77, 115, 70, 25, 6, 1, 1, 295, 510, 344, 135, 36, 7, 1, 1, 1329, 2602, 1908, 805, 231, 49, 8, 1, 1, 6934, 15133, 11904, 5325, 1616, 364, 64, 9, 1, 1, 41351, 99367, 83028, 39001, 12381, 2919, 540, 81, 10, 1
Offset: 0
Examples
T(7,3) = 344 = 1*1 + 9*3 + 9*9 + 4*30 + 1*115 = T(4,0)*T(2,2) +T(4,1)*T(3,2) +T(4,2)*T(4,2) +T(4,3)*T(5,2) +T(4,4)*T(6,2). Rows begin: {1}, {1,1}, {1,2,1}, {1,4,3,1}, {1,9,9,4,1}, {1,24,30,16,5,1}, {1,77,115,70,25,6,1}, {1,295,510,344,135,36,7,1}, {1,1329,2602,1908,805,231,49,8,1}, {1,6934,15133,11904,5325,1616,364,64,9,1},...
Programs
-
PARI
T(n,k)=if(k>n || n<0 || k<0,0,if(k==0 || k==n,1, sum(j=0,n-k,T(n-k,j)*T(j+k-1,k-1)););)
Comments