cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A089924 Number of plane partitions of n with 3 or more columns.

Original entry on oeis.org

0, 0, 1, 3, 8, 19, 41, 85, 167, 319, 588, 1066, 1880, 3272, 5588, 9431, 15686, 25841, 42070, 67926, 108634, 172467, 271643, 425109, 660756, 1021170, 1568905, 2398059, 3646437, 5519025, 8314623, 12473538, 18634748, 27731820, 41113453, 60735830, 89411503, 131193675
Offset: 1

Views

Author

Wouter Meeussen, Jan 11 2004

Keywords

Comments

Because of symmetry of the 3-dimensional-Ferrers plots, this sequence also counts the plane partitions with 3 or more rows and the plane partitions with maximal element >= 3

Examples

			a(4)=3:
  1111 111 211
  .... 1.. ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(min(d, k)
          *d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> b(n, infinity)-b(n,2):
    seq(a(n), n=1..50);  # Alois P. Heinz, Sep 24 2018
  • Mathematica
    (* planepartitions[] : see link *); Table[Count[planepartitions[n], q_ /; Length[First[q]] >= 3], {n, 12}]

Extensions

a(21)-a(27) from Vaclav Kotesovec, May 05 2018
a(28)-a(38) from Alois P. Heinz, Sep 24 2018

A091355 Triangle read by rows: T(n,k) = number of planar partitions of n with k rows.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 7, 9, 5, 2, 1, 11, 18, 11, 5, 2, 1, 15, 30, 22, 11, 5, 2, 1, 22, 53, 42, 24, 11, 5, 2, 1, 30, 85, 78, 46, 24, 11, 5, 2, 1, 42, 139, 138, 90, 48, 24, 11, 5, 2, 1, 56, 215, 239, 164, 94, 48, 24, 11, 5, 2, 1, 77, 336, 405, 298, 176, 96, 48, 24, 11, 5, 2, 1, 101, 504, 669, 520, 324, 180, 96, 48, 24, 11, 5, 2, 1
Offset: 1

Views

Author

Christian G. Bower, Jan 02 2004

Keywords

Comments

Row sums give A000219.
Columns 1-5 are respectively A000041, A091356, A091357, A091358, and A091359.
Columns converge to A091360.

Examples

			Triangle starts:
01:  1,
02:  2, 1,
03:  3, 2, 1,
04:  5, 5, 2, 1,
05:  7, 9, 5, 2, 1,
06:  11, 18, 11, 5, 2, 1,
07:  15, 30, 22, 11, 5, 2, 1,
08:  22, 53, 42, 24, 11, 5, 2, 1,
09:  30, 85, 78, 46, 24, 11, 5, 2, 1,
10:  42, 139, 138, 90, 48, 24, 11, 5, 2, 1,
11:  56, 215, 239, 164, 94, 48, 24, 11, 5, 2, 1,
12:  77, 336, 405, 298, 176, 96, 48, 24, 11, 5, 2, 1,
13:  101, 504, 669, 520, 324, 180, 96, 48, 24, 11, 5, 2, 1,
14:  135, 760, 1088, 899, 580, 336, 182, 96, 48, 24, 11, 5, 2, 1,
15:  176, 1115, 1741, 1512, 1020, 606, 340, 182, 96, 48, 24, 11, 5, 2, 1,
...
		

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
          min(d, k)*d, d=divisors(j))*A(n-j, k), j=1..n)/n)
        end:
    T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=1..n), n=1..15);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    (* load EulerTransform from 'seqtranslib.m' under OEIS-Transforms *) Table[EulerTransform[Table[Min[c, r], {r, 20}]] - EulerTransform[Table[Min[c-1, r], {r, 20}]], {c, 20}] // Transpose
    (* second program: *)
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[Min[d, k]*d, {d, Divisors[j]}] *A[n-j, k], {j, 1, n}]/n]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1] ]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 23 2016, after Alois P. Heinz *)

Formula

k-th column is EulerTransform[1, 2, 3, .., k, k, k, ..]-EulerTransform[1, 2, 3, .., k-1, k-1, k-1, ..]. - Wouter Meeussen, Aug 29 2004

Extensions

Definition corrected, Joerg Arndt, Jul 21 2014

A091356 Number of planar partitions of n with exactly 2 rows.

Original entry on oeis.org

1, 2, 5, 9, 18, 30, 53, 85, 139, 215, 336, 504, 760, 1115, 1635, 2351, 3375, 4770, 6725, 9368, 13006, 17885, 24510, 33319, 45139, 60743, 81457, 108610, 144334, 190844, 251542, 330082, 431825, 562710, 731154, 946644, 1222305, 1573155, 2019471
Offset: 2

Views

Author

Christian G. Bower, Jan 02 2004

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(min(d, k)
         *d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> b(n, 2)-b(n, 1):
    seq(a(n), n=2..50);  # Alois P. Heinz, Oct 02 2018
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[Sum[Min[d, k] d, {d, Divisors[j]}] b[n - j, k], {j, 1, n}]/n];
    a[n_] :=  b[n, 2] - b[n, 1];
    a /@ Range[2, 50] (* Jean-François Alcover, Oct 28 2020, after Alois P. Heinz *)

Formula

a(n) = A000990(n) - A000041(n).
Showing 1-3 of 3 results.