A091368 Primes p such that the sum of the digits of p is not prime, but the sum of each digit raised to the 4th power is prime.
1699, 2689, 6199, 6829, 6991, 7477, 8089, 8269, 8629, 9619, 12589, 15289, 19069, 19609, 20599, 20959, 21589, 21859, 23857, 25189, 25819, 25873, 25981, 27259, 27529, 27583, 28069, 28537, 28573, 28591, 28753, 29059, 29527, 29581, 29851
Offset: 1
Examples
a(1)=1699 because 1+6+9+9 = 25 which is not prime, but 1^4 + 6^4 + 9^4 + 9^4 = 14419 which is prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
pnpQ[n_]:=Module[{idn=IntegerDigits[n]},!PrimeQ[Total[idn]]&&PrimeQ[ Total[ idn^4]]]; Select[Prime[Range[4000]],pnpQ] (* Harvey P. Dale, Apr 26 2018 *)
Comments