cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091393 a(n) = Product_{ p | n } (1 + Legendre(-3,p) ).

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); L := proc(n,N) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul((1+legendre(N,t1[i][1])),i=1..nops(t1)); end; [seq(L(n,-3),n=1..120)];
  • Mathematica
    a[n_] := Product[1 + KroneckerSymbol[-3, p], {p, FactorInteger[n][[;; , 1]]}];
    a[1] = 1; Array[a, 100] (* Amiram Eldar, Oct 17 2022 *)
  • PARI
    vecproduct(v) = { my(m=1); for(i=1,#v,m *= v[i]); m; };
    A091393(n) = vecproduct(apply(p -> (1 + kronecker(-3,p)), factorint(n)[, 1])); \\ Antti Karttunen, Nov 18 2017

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3*sqrt(3)/(4*Pi) = 0.413496... (A240935). - Amiram Eldar, Oct 17 2022