cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091434 Poincaré series [or Poincare series] (or Molien series) for a certain four-fold wreath product P_4.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 15, 18, 29, 31, 47, 56, 76, 91, 124, 143, 191, 226, 286, 340, 430, 499, 622, 729, 885, 1035, 1250, 1443, 1729, 1997, 2354, 2713, 3184, 3635, 4239, 4834, 5580, 6344, 7291, 8236, 9422, 10619, 12059, 13555, 15338, 17153, 19335, 21574, 24189, 26921, 30088, 33355, 37165
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2004

Keywords

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004, p. 202.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)) )); // G. C. Greubel, Jan 31 2020
    
  • Maple
    seq(coeff(series((1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Jan 31 2020
  • Mathematica
    CoefficientList[Series[(1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)), {x,0,70}], x] (* G. C. Greubel, Jan 31 2020 *)
  • PARI
    my(x='x+O('x^70)); Vec((1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12))) \\ G. C. Greubel, Jan 31 2020
    
  • Sage
    def A091434_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)) ).list()
    A091434_list(70) # G. C. Greubel, Jan 31 2020

Formula

G.f.: (x^30 + x^25 + x^23 + x^22 + x^21 + 2*x^20 + x^19 + x^18 + x^17 + x^16 + 2*x^15 + x^14 + x^13 + x^12 + x^11 + 2*x^10 + x^9 + x^8 + x^7 + x^5 + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^4)*(1 - x^6)^2*(1 - x^8)*(1 - x^9)*(1 - x^12)).

Extensions

G.f. and data corrected by N. J. A. Sloane, Jan 05 2017