A091438 Triangle a(n,k) of partitions of n objects of 2 colors, k of which are black and each part with at least one black object.
1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 6, 7, 7, 1, 4, 8, 12, 12, 11, 1, 4, 10, 16, 21, 19, 15, 1, 5, 12, 23, 31, 36, 30, 22, 1, 5, 15, 28, 45, 55, 58, 45, 30, 1, 6, 17, 37, 60, 84, 94, 92, 67, 42, 1, 6, 20, 44, 80, 115, 147, 153, 140, 97, 56, 1, 7, 23, 55, 101, 161, 211, 249, 244, 211, 139, 77
Offset: 1
Examples
1; 1, 2; 1, 2, 3; 1, 3, 4, 5; 1, 3, 6, 7, 7; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Programs
-
Maple
b:= proc(n, i, j, k) option remember; `if`(n=0, `if`(k=0, 1, 0), `if`(i<1 or k<1, 0, `if`(j<1, b(n, i-1, i-1, k), b(n, i, j-1, k)+`if`(i>n or j>k, 0, b(n-i, i, j, k-j))))) end: a:= (n, k)-> b(n$2, k$2): seq(seq(a(n,k), k=1..n), n=1..15); # Alois P. Heinz, Mar 14 2015
-
Mathematica
b[n_, i_, j_, k_] := b[n, i, j, k] = If[n == 0, If[k == 0, 1, 0], If[i < 1 || k < 1, 0, If[j < 1, b[n, i - 1, i - 1, k], b[n, i, j - 1, k] + If[i > n || j > k, 0, b[n - i, i, j, k - j]]]]]; a[n_, k_] := b[n, n, k, k]; Table[a[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 10 2016, after Alois P. Heinz *)
Formula
G.f.: A(x,y) = Product_{i>=1, j=1..i} (1/(1-x^i*y^j)).
Comments