A091484 Recamán's Fibonacci variation : a(1)=a(2)=1 then a(n) = a(n-1)+a(n-2)-F(n) if that number is >0 and not already in the sequence; a(n) = a(n-1)+a(n-2)+F(n) otherwise where F(n) denotes the n-th Fibonacci number.
1, 1, 4, 2, 11, 5, 3, 29, 66, 40, 17, 201, 451, 275, 116, 1378, 3091, 1885, 795, 9445, 21186, 12920, 5449, 64737, 145211, 88555, 37348, 443714, 995291, 606965, 255987, 3041261, 6821826, 4160200, 1754561, 20845113, 46757491, 28514435, 12025940
Offset: 1
Examples
a(6)+a(5)=5+11=16 and F(7)=13. Since 16-13=3 is not already in the sequence, a(7)= a(6)+a(5)-F(7)=3.
Programs
-
PARI
m=200; a=vector(m); a[1]=1; a[2]=1; for(n=3, m, a[n]=if(n<0, 0, if(abs(sign(a[n-1]+a[n-2]-fibonacci(n))-1)+setsearch(Set(vector(n-1, i, a[i])), a[n-1]+a[n-2]-fibonacci(n)), a[n-1]+a[n-2]+fibonacci(n), a[n-1]+a[n-2]-fibonacci(n)))); a
Formula
With phi=(1+sqrt(5))/2 for n>1 : a(4n)=floor(r*phi^(4n)) where r = (-675+327*sqrt(5))/90; a(4n+1)=floor(s*phi^(4n+1)) where s=(-132+66*sqrt(5))/18; a(4n+2)=floor(s*phi^(4n+2)) where t= (-15+7*sqrt(5))/2; a(4n+3)=floor(u*phi^(4n+3)) where u=(-115+52*sqrt(5))/15.
For n>=0, a(4n+5) = 11/3*Luc(4n+2), a(4n+6) = 5*Fib(4n+2).
For n>=3, the sequence satisfies the order 8 linear recurrence: a(n+8)-7*a(n+4)+a(n)=0. - Benoit Cloitre, Apr 30 2006
Empirical g.f.: x*(6*x^7-4*x^6+17*x^5-12*x^4+3*x^3-5*x^2-1) / ((x^2+x-1)*(x^4+3*x^2+1)). - Colin Barker, Jun 26 2013
Extensions
PARI code corrected by Colin Barker, Jun 26 2013
Comments