A091507 Product of the anti-divisors of n.
2, 3, 6, 4, 30, 15, 12, 84, 42, 40, 270, 108, 120, 33, 2310, 1680, 78, 312, 168, 8100, 4050, 112, 7140, 204, 11880, 25080, 114, 960, 7938, 257985, 17160, 276, 19320, 192, 11250, 1732500, 24024, 11664, 1458, 114240, 14790, 696, 5896800, 33852, 17670
Offset: 3
Keywords
Examples
For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {3,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 12 are 4, 5, 7, 12. Therefore a(18) = 4*5*7*12 = 1680.
Links
- Paolo P. Lava, Table of n, a(n) for n = 3..1000
- Jon Perry, Anti-divisors.
- Jon Perry, The Anti-divisor [Cached copy]
- Jon Perry, The Anti-divisor: Even More Anti-Divisors [Cached copy]
Crossrefs
Cf. A066417.
Programs
-
Maple
A091507 := proc(n) mul( a, a=antidivisors(n)) ; # reuse A066272 end proc: seq(A091507(n),n=3..10) ; # R. J. Mathar, Jan 24 2022
-
Mathematica
antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n &]; Table[ Times @@ antid[n], {n, 3, 50}] (* Robert G. Wilson v, Mar 15 2004 *) a091507[n_Integer] := Apply[Times, Cases[Range[2, n - 1], ?(Abs[Mod[n, #] - #/2] < 1 &)]]; Array[a091507, 10000] (* _Michael De Vlieger, Aug 08 2014, after Harvey P. Dale at A066272 *)
-
Python
from functools import reduce from operator import mul def A091507(n): return reduce(mul,[d for d in range(2,n) if n%d and 2*n%d in [d-1,0,1]]) # Chai Wah Wu, Aug 08 2014
Comments