A091531 Primes p such that k = 2p is the smallest positive solution to the equation phi(p+k) = phi(p) + phi(k), where phi is Euler's totient function.
7, 23, 31, 43, 59, 67, 71, 73, 101, 103, 107, 127, 131, 137, 139, 179, 199, 211, 223, 227, 239, 269, 281, 283, 307, 311, 331, 347, 359, 367, 379, 383, 431, 439, 463, 467, 479, 487, 491, 503, 523, 547, 563, 571, 607, 619, 631, 643, 659, 661, 683, 691, 719, 727
Offset: 1
Keywords
Crossrefs
Cf. A066426 (least k such that phi(n+k)=phi(n)+phi(k)).
Programs
-
Mathematica
lst={}; Do[p=Prime[n]; k=1; While[EulerPhi[p+k]!=EulerPhi[p]+EulerPhi[k], k++ ]; If[k==2p, AppendTo[lst, p]], {n, 3, 200}]; lst
Comments