cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091543 Triangle built from first column sequences of generalized Stirling2 arrays (m+2,2)-Stirling2, m >= 0.

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 72, 12, 1, 16, 1440, 360, 20, 1, 32, 43200, 20160, 1120, 30, 1, 64, 1814400, 1814400, 123200, 2700, 42, 1, 128, 101606400, 239500800, 22422400, 491400, 5544, 56, 1, 256, 7315660800, 43589145600, 6098892800, 150368400
Offset: 1

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Crossrefs

Cf. A091547 (row sums), A091548 (alternating row sums).
For m = 0, 1, ..., 6 the column sequences are (without leading zeros): A000079 (powers of 2), A010796, A002674, A091535, A091544-6.

Formula

a(n, m) = m^(2*(n-m))*Pochhammer(1/m, n-m)*Pochhammer(2/m, n-m)/2 if n-1 >= m >= 1; a(n, 0) = 2^(n-1); otherwise 0.
E.g.f. for m = 1, 2, ... column (without leading zeros and offset n=1): (hypergeom([1/m, 2/m], [], (m^2)*x)-1)/2.
G.f. for m=1 column: x/(1-2*x); e.g.f.: (exp(2*x)-1)/2.
a(n, m) = (1/2)*Product_{j=0..n-m-1} (m*j+2)*(m*j+1), n >= m+1 >= 1, otherwise 0. From eq. 12 of the Blasiak et al. reference with r=m+2, s=2, k=2.