cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091597 Triangle read by rows: T(n,0) = A001045(n+1), T(n,n)=1, T(n,m) = T(n-1,m-1) + T(n-1,m).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 5, 5, 3, 1, 11, 10, 8, 4, 1, 21, 21, 18, 12, 5, 1, 43, 42, 39, 30, 17, 6, 1, 85, 85, 81, 69, 47, 23, 7, 1, 171, 170, 166, 150, 116, 70, 30, 8, 1, 341, 341, 336, 316, 266, 186, 100, 38, 9, 1, 683, 682, 677, 652, 582, 452, 286, 138, 47, 10, 1
Offset: 0

Views

Author

Paul Barry, Jan 23 2004

Keywords

Comments

A Jacobsthal-Pascal triangle.
Equals triangle M * Pascal's triangle, M = an infinite lower triangular Toeplitz matrix with A078008: [1, 0, 2, 2, 6, 10, 22, 42, ...] in every column. - Gary W. Adamson, May 25 2009

Examples

			Triangle begins as:
    1;
    1,   1;
    3,   2,   1;
    5,   5,   3,   1;
   11,  10,   8,   4,   1;
   21,  21,  18,  12,   5,   1;
   43,  42,  39,  30,  17,   6,   1;
   85,  85,  81,  69,  47,  23,   7,  1;
  171, 170, 166, 150, 116,  70,  30,  8, 1;
  341, 341, 336, 316, 266, 186, 100, 38, 9, 1;
		

Crossrefs

Columns include A001045, A000975, A011377.
Row sums are A059570.
Cf. A078008. - Gary W. Adamson, May 25 2009

Programs

  • GAP
    Flat(List([0..12], n->List([0..n], k-> Sum([0..n], j-> 2^j*Binomial(n-j, k+j)) ))); # G. C. Greubel, Jun 04 2019
  • Magma
    [[(&+[2^j*Binomial(n-j, k+j): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jun 04 2019
    
  • Maple
    A091597 := proc(n,k)
        if k = 0 then
            A001045(n+1) ;
        elif k = n then
            1 ;
        elif k <0 or k > n then
            0 ;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Oct 05 2012
  • Mathematica
    Table[Sum[Binomial[n-j, k+j]*2^j, {j,0,n}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 04 2019 *)
  • PARI
    {T(n,k) = sum(j=0, n, 2^j*binomial(n-j, k+j))}; \\ G. C. Greubel, Jun 04 2019
    
  • Sage
    [[sum(2^j*binomial(n-j, k+j) for j in (0..n)) for k in (0..n)] for n in [0..12]] # G. C. Greubel, Jun 04 2019
    

Formula

Number triangle: T(n, k) = Sum_{j=0..n} binomial(n-j, k+j)2^j.
Riordan array: (1/(1-x-2*x^2), x/(1-x)).
k-th column has g.f. (1/(1-x-2*x^2))*(x/(1-x))^k.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-1) - 2*T(n-3,k) - 2*T(n-3,k-1), T(0,0)=T(1,0)=T(1,1)=T(2,2)=1, T(2,0)=3, T(2,1)=2, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Jan 11 2014