A091597 Triangle read by rows: T(n,0) = A001045(n+1), T(n,n)=1, T(n,m) = T(n-1,m-1) + T(n-1,m).
1, 1, 1, 3, 2, 1, 5, 5, 3, 1, 11, 10, 8, 4, 1, 21, 21, 18, 12, 5, 1, 43, 42, 39, 30, 17, 6, 1, 85, 85, 81, 69, 47, 23, 7, 1, 171, 170, 166, 150, 116, 70, 30, 8, 1, 341, 341, 336, 316, 266, 186, 100, 38, 9, 1, 683, 682, 677, 652, 582, 452, 286, 138, 47, 10, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 3, 2, 1; 5, 5, 3, 1; 11, 10, 8, 4, 1; 21, 21, 18, 12, 5, 1; 43, 42, 39, 30, 17, 6, 1; 85, 85, 81, 69, 47, 23, 7, 1; 171, 170, 166, 150, 116, 70, 30, 8, 1; 341, 341, 336, 316, 266, 186, 100, 38, 9, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
GAP
Flat(List([0..12], n->List([0..n], k-> Sum([0..n], j-> 2^j*Binomial(n-j, k+j)) ))); # G. C. Greubel, Jun 04 2019
-
Magma
[[(&+[2^j*Binomial(n-j, k+j): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jun 04 2019
-
Maple
A091597 := proc(n,k) if k = 0 then A001045(n+1) ; elif k = n then 1 ; elif k <0 or k > n then 0 ; else procname(n-1,k-1)+procname(n-1,k) ; end if; end proc: # R. J. Mathar, Oct 05 2012
-
Mathematica
Table[Sum[Binomial[n-j, k+j]*2^j, {j,0,n}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 04 2019 *)
-
PARI
{T(n,k) = sum(j=0, n, 2^j*binomial(n-j, k+j))}; \\ G. C. Greubel, Jun 04 2019
-
Sage
[[sum(2^j*binomial(n-j, k+j) for j in (0..n)) for k in (0..n)] for n in [0..12]] # G. C. Greubel, Jun 04 2019
Formula
Number triangle: T(n, k) = Sum_{j=0..n} binomial(n-j, k+j)2^j.
Riordan array: (1/(1-x-2*x^2), x/(1-x)).
k-th column has g.f. (1/(1-x-2*x^2))*(x/(1-x))^k.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-1) - 2*T(n-3,k) - 2*T(n-3,k-1), T(0,0)=T(1,0)=T(1,1)=T(2,2)=1, T(2,0)=3, T(2,1)=2, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Jan 11 2014
Comments