A091598 Triangle read by rows: T(n,0) = A078008(n), T(n,m) = T(n-1,m-1) + T(n-1,m).
1, 0, 1, 2, 1, 1, 2, 3, 2, 1, 6, 5, 5, 3, 1, 10, 11, 10, 8, 4, 1, 22, 21, 21, 18, 12, 5, 1, 42, 43, 42, 39, 30, 17, 6, 1, 86, 85, 85, 81, 69, 47, 23, 7, 1, 170, 171, 170, 166, 150, 116, 70, 30, 8, 1, 342, 341, 341, 336, 316, 266, 186, 100, 38, 9, 1, 682, 683, 682, 677, 652, 582, 452, 286, 138, 47, 10, 1
Offset: 0
Examples
Triangle starts as: 1; 0, 1; 2, 1, 1; 2, 3, 2, 1; 6, 5, 5, 3, 1; 10, 11, 10, 8, 4, 1; 22, 21, 21, 18, 12, 5, 1; 42, 43, 42, 39, 30, 17, 6, 1; ...
Links
- G. C. Greubel, Rows n = 0..20 of triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= If[k==0, (2^n + 2*(-1)^n)/3, If[k<0 || k>n, 0, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 04 2019 *)
-
PARI
{T(n,k) = if(k==0, (2^n + 2*(-1)^n)/3, if(k<0 || k>n, 0, T(n-1,k-1) + T(n-1,k)))}; \\ G. C. Greubel, Jun 04 2019
-
Sage
def T(n, k): if (k<0 or k>n): return 0 elif (k==0): return (2^n + 2*(-1)^n)/3 else: return T(n-1, k-1) + T(n-1, k) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jun 04 2019
Formula
k-th column has e.g.f. ((1-x)/(1-x-x^2))*(x/(1-x))^k.
Comments