A091601 Number of compositions (ordered partitions) of n with designated summands.
1, 1, 3, 6, 14, 30, 69, 153, 345, 771, 1730, 3873, 8682, 19450, 43590, 97668, 218864, 490416, 1098933, 2462458, 5517870, 12364356, 27705944, 62083134, 139115247, 311727845, 698516370, 1565227653, 3507344882, 7859219406, 17610851898
Offset: 0
Keywords
Examples
a(3)=6 because the compositions of 3 with designated summands are 3', 2'1', 1'2', 1'11, 11'1, 111'. The composition 1121 corresponds to 1'12'1' and 11'2'1'.
Links
- N. J. A. Sloane, Transforms
Crossrefs
Cf. A077285.
Programs
-
Mathematica
Table[l = Split /@ Flatten[Permutations /@ IntegerPartitions@n, 1]; Total[Table[x = l[[i]]; Product[Length@x[[j]], {j, Length[x]}], {i, Length[l]}]], {n, 0, 15}] (* Robert Price, Jun 07 2020 *)
Formula
G.f.: 1/(1 - sum(k>0, x^k/(1-x^k+x^(2*k)))). - Vladeta Jovovic, Dec 04 2004