A091614 Matrix inverse of triangle A091613.
1, -1, 1, -3, 0, 1, -1, -3, 0, 1, 5, -6, -2, 0, 1, 13, -4, -5, -2, 0, 1, 27, 1, -7, -4, -2, 0, 1, 41, 12, -4, -6, -4, -2, 0, 1, 43, 35, 4, -6, -5, -4, -2, 0, 1, 25, 72, 18, 0, -5, -5, -4, -2, 0, 1, -23, 128, 40, 11, -2, -4, -5, -4, -2, 0, 1, -157, 205, 77, 30, 8, -1, -4, -5, -4, -2, 0, 1
Offset: 1
Examples
Triangle begins as: 1; -1, 1; -3, 0, 1; -1, -3, 0, 1; 5, -6, -2, 0, 1; 13, -4, -5, -2, 0, 1; 27, 1, -7, -4, -2, 0, 1; 41, 12, -4, -6, -4, -2, 0, 1; 43, 35, 4, -6, -5, -4, -2, 0, 1; 25, 72, 18, 0, -5, -5, -4, -2, 0, 1; -23, 128, 40, 11, -2, -4, -5, -4, -2, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
b[n_, l_, k_]:= b[n, l, k]= If[n==0, 1, Sum[If[i==l, 0, Sum[b[n-i*j, i, k], {j, Min[k, n/i]}]], {i, n}]]; t[n_, k_]:= b[n, 0, k] - b[n, 0, k-1]; (* t = A091613 *) M:= With[{p = 16}, Table[t[n, k], {n, p}, {k, p}]]; T:= Inverse[M]; Table[T[[n, k]], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Nov 27 2021 *)
Extensions
Name corrected by G. C. Greubel, Nov 27 2021