cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091616 Number of compositions (ordered partitions) of n such that some part is repeated consecutively 2 times and no part is repeated consecutively more than 2 times.

Original entry on oeis.org

1, 0, 3, 6, 10, 23, 50, 99, 200, 404, 805, 1599, 3166, 6225, 12223, 23934, 46713, 90995, 176935, 343395, 665474, 1287918, 2489467, 4806805, 9272272, 17870317, 34414163, 66226890, 127365537, 244803475, 470278815, 902997083, 1733124564, 3325087228, 6377076320
Offset: 2

Views

Author

Christian G. Bower, Jan 23 2004

Keywords

Crossrefs

Column k=2 of A091613.
Cf. A128695.

Programs

  • Maple
    b:= proc(n, l, k) option remember; `if`(n=0, 1, add(`if`(
          i=l, 0, add(b(n-i*j, i, k), j=1..min(k, n/i))), i=1..n))
        end:
    a:= n-> b(n, 0, 2) -b(n, 0, 1):
    seq(a(n), n=2..50);  # Alois P. Heinz, Feb 08 2017
  • Mathematica
    b[n_, l_, k_] := b[n, l, k] = If[n == 0, 1, Sum[If[i == l, 0, Sum[b[n - i*j, i, k], {j, 1, Min[k, n/i]}]], {i, 1, n}]];
    a[n_] := b[n, 0, 2] - b[n, 0, 1];
    Table[a[n], {n, 2, 50}] (* Jean-François Alcover, May 21 2018, after Alois P. Heinz *)
    nmax = 50; Drop[CoefficientList[Series[1/(1 - Sum[(x^k + x^(2*k))/(1 + x^k + x^(2*k)), {k, 1, nmax}]) - 1/(1 - Sum[x^k/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x], 2] (* Vaclav Kotesovec, Jul 07 2020 *)

Formula

a(n) ~ c * d^n, where d = 1.9107639262818041675000243699745706859... (see A128695), c = 0.499300813712837808621944870186032611... - Vaclav Kotesovec, Sep 21 2019
a(n) = A128695(n) - A003242(n). - Vaclav Kotesovec, Jul 07 2020