A091645
Number of primes less than 10^n having at least one digit 1.
Original entry on oeis.org
0, 8, 67, 559, 4917, 44073, 402030, 3709989, 34534791, 323587790, 3046685950, 28798331502, 273078628285, 2596399340798
Offset: 1
a(2) = 8 because of the 25 primes less than 10^2, 8 have at least one 1 digit.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 1] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 2] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
A091637
Number of primes less than 10^n which do not contain the digit 3.
Original entry on oeis.org
3, 16, 102, 668, 4715, 34813, 265015, 2067152, 16413535, 132200223, 1076692515, 8849480283, 73288053795, 610860050965
Offset: 1
a(2)=16 because there are 25 primes less than 10^2, 9 have at least one digit 3; 25-9 = 16.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 3] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
Table[Count[Prime[Range[PrimePi[10^n]]],?(DigitCount[#,10,3]==0&)],{n,8}] (* _Harvey P. Dale, Oct 04 2011 *)
-
good(n)=n=eval(Vec(Str(n)));for(i=1,#n,if(n[i]==3,return(1)));0
a(n)=my(s);forprime(p=2,10^n,s+=good(p));s \\ Charles R Greathouse IV, Oct 04 2011
-
from sympy import primerange
def a(n): return sum('3' not in str(p) for p in primerange(2, 10**n))
print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Mar 16 2021
A091644
Number of primes less than 10^n which have at least one digit 0.
Original entry on oeis.org
0, 0, 15, 219, 2470, 26185, 266713, 2658107, 26198216, 256516296, 2501246232, 24320647270, 236032108530, 2287868820615
Offset: 1
a(3) = 15 because of the 168 primes less than 10^3, 15 have at least one 0 digit.
-
NextPrim[n_] := Block[{k = n + 1}, While[ ! PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 0] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import sieve # use primerange for larger terms
def digs0(n): return '0' in str(n)
def aupton(terms):
ps, alst = 0, []
for n in range(1, terms+1):
ps += sum(digs0(p) for p in sieve.primerange(10**(n-1), 10**n))
alst.append(ps)
return alst
print(aupton(7)) # Michael S. Branicky, Apr 25 2021
A091646
Number of primes less than 10^n having at least one digit 2.
Original entry on oeis.org
1, 3, 29, 352, 3357, 32393, 312424, 3014171, 29016211, 279171099, 2685272908, 25829666453, 248507003625, 2391688694305
Offset: 1
a(2) = 3 because of the 25 primes less than 10^2, 3 have at least one digit 2.
A091707
Number of primes less than 10^n having at least one digit 6.
Original entry on oeis.org
0, 2, 32, 332, 3225, 31792, 309431, 2991216, 28863327, 278085918, 2677289604, 25769815303, 248050788931, 2388172543971
Offset: 1
a(1) = 0 because of the 4 primes less than 10^1, none have at least one digit 6.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 6] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import sieve # use slower primerange for larger terms
def a(n): return sum('6' in str(p) for p in sieve.primerange(2, 10**n))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 23 2021
A091708
Number of primes less than 10^n having at least one digit 7.
Original entry on oeis.org
1, 9, 68, 549, 4819, 43506, 397756, 3681943, 34344296, 322199867, 3036544958, 28722439343, 272501681533, 2591959274190
Offset: 1
a(1) = 1 because of the 4 primes less than 10^1, 1 has at least one digit 7.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 7] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
Table[Count[Prime[Range[PrimePi[10^n]]],?(DigitCount[#,10,7]>0&)],{n,12}] (* _Harvey P. Dale, Mar 03 2013 *)
A091709
Number of primes less than 10^n having at least one digit 8.
Original entry on oeis.org
0, 2, 27, 314, 3217, 31699, 308774, 2987107, 28824402, 277779084, 2674980022, 25752370493, 247919235555, 2387154761520
Offset: 1
a(2) = 2 because of the 25 primes less than 10^2, 2 have at least one digit 8.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 8] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import sieve # use slower primerange for larger terms
def a(n): return sum('8' in str(p) for p in sieve.primerange(2, 10**n))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 23 2021
A091710
Number of primes less than 10^n having at least one digit 9.
Original entry on oeis.org
0, 6, 60, 542, 4826, 43359, 397093, 3677641, 34316162, 321993007, 3035059323, 28710966351, 272413818120, 2591276923548
Offset: 1
a(2) = 6 because of the 25 primes less than 10^2, 6 have at least one digit 9.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 9] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
A091705
Number of primes less than 10^n having at least one digit 4.
Original entry on oeis.org
0, 3, 32, 326, 3231, 31953, 310456, 3000349, 28922364, 278508004, 2680391313, 25793058269, 248228108241, 2389543008906
Offset: 1
a(2) = 3 because of the 25 primes less than 10^2, 3 have at least one digit 4.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 4] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
A091706
Number of primes less than 10^n having at least one digit 5.
Original entry on oeis.org
1, 3, 32, 324, 3282, 31949, 309669, 2995706, 28891689, 278270868, 2678674624, 25780340194, 248131741834, 2388797604792
Offset: 1
a(1) = 1 because of the 4 primes less than 10^1, 1 has at least one digit 5.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 5] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
Table[Count[Prime[Range[PrimePi[10^n]]],?(DigitCount[#,10,5]>0&)],{n,8}] (* _Harvey P. Dale, Dec 29 2012 *)
Showing 1-10 of 10 results.
Comments