A091645
Number of primes less than 10^n having at least one digit 1.
Original entry on oeis.org
0, 8, 67, 559, 4917, 44073, 402030, 3709989, 34534791, 323587790, 3046685950, 28798331502, 273078628285, 2596399340798
Offset: 1
a(2) = 8 because of the 25 primes less than 10^2, 8 have at least one 1 digit.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 1] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 2] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
A091639
Number of primes less than 10^n which do not contain the digit 5.
Original entry on oeis.org
3, 22, 136, 905, 6310, 46549, 354910, 2765749, 21955845, 176781643, 1439380189, 11827571824, 97933795005, 816144146010
Offset: 1
a(2) = 22 because of the 25 primes less than 10^2, 3 have at least one digit 5; 25-3 = 22.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 5] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import primerange
def a(n): return sum('5' not in str(p) for p in primerange(2, 10**n))
print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Mar 22 2021
A091644
Number of primes less than 10^n which have at least one digit 0.
Original entry on oeis.org
0, 0, 15, 219, 2470, 26185, 266713, 2658107, 26198216, 256516296, 2501246232, 24320647270, 236032108530, 2287868820615
Offset: 1
a(3) = 15 because of the 168 primes less than 10^3, 15 have at least one 0 digit.
-
NextPrim[n_] := Block[{k = n + 1}, While[ ! PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 0] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import sieve # use primerange for larger terms
def digs0(n): return '0' in str(n)
def aupton(terms):
ps, alst = 0, []
for n in range(1, terms+1):
ps += sum(digs0(p) for p in sieve.primerange(10**(n-1), 10**n))
alst.append(ps)
return alst
print(aupton(7)) # Michael S. Branicky, Apr 25 2021
A091646
Number of primes less than 10^n having at least one digit 2.
Original entry on oeis.org
1, 3, 29, 352, 3357, 32393, 312424, 3014171, 29016211, 279171099, 2685272908, 25829666453, 248507003625, 2391688694305
Offset: 1
a(2) = 3 because of the 25 primes less than 10^2, 3 have at least one digit 2.
A091647
Number of primes less than 10^n having at least one digit 3.
Original entry on oeis.org
1, 9, 66, 561, 4877, 43685, 399564, 3694303, 34433999, 322852288, 3041362298, 28758431735, 272777483044, 2594081699837
Offset: 1
a(2) = 9 because of the 25 primes less than 10^2, 9 have at least one digit 3.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 3] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
A091707
Number of primes less than 10^n having at least one digit 6.
Original entry on oeis.org
0, 2, 32, 332, 3225, 31792, 309431, 2991216, 28863327, 278085918, 2677289604, 25769815303, 248050788931, 2388172543971
Offset: 1
a(1) = 0 because of the 4 primes less than 10^1, none have at least one digit 6.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 6] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import sieve # use slower primerange for larger terms
def a(n): return sum('6' in str(p) for p in sieve.primerange(2, 10**n))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 23 2021
A091705
Number of primes less than 10^n having at least one digit 4.
Original entry on oeis.org
0, 3, 32, 326, 3231, 31953, 310456, 3000349, 28922364, 278508004, 2680391313, 25793058269, 248228108241, 2389543008906
Offset: 1
a(2) = 3 because of the 25 primes less than 10^2, 3 have at least one digit 4.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 4] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
Showing 1-7 of 7 results.
Comments