A091650 Let M = the 4 X 4 matrix [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / -1 -1 3 2]. Set seed vector = [1 1 1 1] = first row, then take M*[1 1 1 1] = [1 1 1 3] then M * [1 1 1 3], etc. Sequence gives terms in rightmost column.
1, 3, 7, 21, 59, 171, 491, 1415, 4073, 11729, 33771, 97241, 279993, 806209, 2321385, 6684163, 19246279, 55417453, 159568195, 459458307, 1322957467, 3809304207, 10968454313, 31582405473, 90937912211, 261845282321, 753953441489, 2170922412257, 6250921954449
Offset: 1
Examples
a(5) = 59 since M*[1 1 1 1] then 4 iterates = [3 7 21 59]. a(5) = rightmost term. a(10)/a(9) = 11729/4073 = 2.8796955...
Links
- Index entries for linear recurrences with constant coefficients, signature (2,3,-1,-1).
Programs
-
Mathematica
Rest[CoefficientList[Series[x (1+x-2x^2-x^3)/(1-2x-3x^2+x^3+x^4),{x,0,40}],x]] (* or *) LinearRecurrence[{2,3,-1,-1},{1,3,7,21},40] (* Harvey P. Dale, Feb 17 2012 *)
-
PARI
Vec((1+x-2*x^2-x^3)/(1-2*x-3*x^2+x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 31 2012
Formula
G.f.: x*(1+x-2*x^2-x^3)/(1-2*x-3*x^2+x^3+x^4). - Colin Barker, Jan 31 2012
a(1)=1, a(2)=3, a(3)=7, a(4)=21, a(n)=2*a(n-1)+3*a(n-2)-a(n-3)-a(n-4). - Harvey P. Dale, Feb 17 2012
Extensions
More terms from Harvey P. Dale, Feb 17 2012
Comments