cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091650 Let M = the 4 X 4 matrix [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / -1 -1 3 2]. Set seed vector = [1 1 1 1] = first row, then take M*[1 1 1 1] = [1 1 1 3] then M * [1 1 1 3], etc. Sequence gives terms in rightmost column.

Original entry on oeis.org

1, 3, 7, 21, 59, 171, 491, 1415, 4073, 11729, 33771, 97241, 279993, 806209, 2321385, 6684163, 19246279, 55417453, 159568195, 459458307, 1322957467, 3809304207, 10968454313, 31582405473, 90937912211, 261845282321, 753953441489, 2170922412257, 6250921954449
Offset: 1

Views

Author

Gary W. Adamson, Jan 25 2004

Keywords

Comments

a(n)/a(n-1) tends to a 9-Gon diagonal.
The other 3 columns are offsets of 1, 3, 7, 21, 59, ... starting with 1's.
The characteristic equation of the 4 X 4 matrix is x^4 - 2x^3 - 3x^4 + x + 1 (coefficients may be found in A066170) with roots 2.879385241..., -1, -.5320888862... and .65270364466... An alternative matrix giving the same eigenvalues (refer to A046854) relates to the 9-Gon: [1 1 1 1 / 1 1 1 0 / 1 1 0 0 / 1 0 0 0] since the eigenvalue 2.8793852...is the longest diagonal of the 9-Gon given edge = 1. Or, 2.879385... = 1/(2*cos(k*Pi/9)), k = 4.

Examples

			a(5) = 59 since M*[1 1 1 1] then 4 iterates = [3 7 21 59]. a(5) = rightmost term.
a(10)/a(9) = 11729/4073 = 2.8796955...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[x (1+x-2x^2-x^3)/(1-2x-3x^2+x^3+x^4),{x,0,40}],x]] (* or *) LinearRecurrence[{2,3,-1,-1},{1,3,7,21},40] (* Harvey P. Dale, Feb 17 2012 *)
  • PARI
    Vec((1+x-2*x^2-x^3)/(1-2*x-3*x^2+x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 31 2012

Formula

G.f.: x*(1+x-2*x^2-x^3)/(1-2*x-3*x^2+x^3+x^4). - Colin Barker, Jan 31 2012
a(1)=1, a(2)=3, a(3)=7, a(4)=21, a(n)=2*a(n-1)+3*a(n-2)-a(n-3)-a(n-4). - Harvey P. Dale, Feb 17 2012

Extensions

More terms from Harvey P. Dale, Feb 17 2012