cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091661 Coefficients in a 10-adic square root of 1.

Original entry on oeis.org

9, 4, 2, 1, 8, 7, 5, 2, 4, 6, 3, 8, 9, 1, 5, 2, 1, 5, 4, 8, 7, 4, 5, 9, 9, 3, 2, 3, 1, 2, 8, 0, 0, 8, 1, 2, 2, 9, 7, 1, 6, 4, 6, 4, 8, 6, 4, 8, 4, 1, 1, 1, 0, 0, 2, 2, 6, 7, 2, 7, 1, 6, 1, 9, 1, 0, 3, 3, 3, 4, 2, 1, 0, 8, 7, 9, 1, 0, 7, 7, 8, 5, 0, 6, 9, 3, 3, 6, 1, 2, 8, 3, 6, 4, 1, 0, 6, 0, 9, 7
Offset: 0

Views

Author

Edoardo Gueglio (egueglio(AT)yahoo.it), Jan 28 2004

Keywords

Comments

10-adic integer x=.....239954784512519836425781249 satisfying x^3 = x.
Let a,b be integers defined in A018247, A018248 satisfying a^2=a, b^2=b, obviously a^3=a, b^3=b; let c,d,e,f be integers defined in A091661, A063006, A091663, A091664 then c^3=c, d^3=d, e^3=e, f^3=f, c+d=1, a+e=1, b+f=1, b+c=a, d+f=e, a+f=c, a=f+1, b=e+1, cd=-1, af=-1, gh=-1 where -1=.....999999999.

Crossrefs

Another 10-adic root of 1 is given by A063006.

Programs

  • Mathematica
    To calculate c, d, e, f use Mathematica algorithms for a, b and equations: c=a-b, d=1-c, e=b-1, f=a-1.
  • Ruby
    def A(s, n)
      n.times{|i|
        m = 10 ** (i + 1)
        (0..9).each{|j|
          k = j * m + s
          if (k ** 2 - k) % (m * 10) == 0
            s = k
            break
          end
        }
      }
      s
    end
    def A091661(n)
      str = (10 ** (n + 1) + A(5, n) - A(6, n)).to_s.reverse
      (0..n).map{|i| str[i].to_i}
    end
    p A091661(100) # Seiichi Manyama, Jul 31 2017

Formula

For n>0, a(n) = 9 - A063006(n).