A091674 Numerator Q of probability P = Q(n)/365^(n-1) that two or more out of n people share the same birthday.
1, 1093, 795341, 481626601, 262130079485, 132974790903865, 64157156143943045, 29808728817823292065, 13447118719710220490765, 5923562823392985950002825, 2558600264156303883127171925, 1087010123072386037371040127025
Offset: 2
Links
- Patrice Le Conte, Coincident Birthdays.
- Mathforum at Drexel, The Birthday Problem, Ask Dr. Math: FAQ.
- Eric Weisstein's World of Mathematics, Birthday Problem.
Crossrefs
Programs
-
Mathematica
Q[n_] := (1 - Product[(1 - i/365), {i, 1, n - 1}])365^(n - 1); Table[ Q[n], {n, 2, 13}] (* Robert G. Wilson v, Feb 05 2004 *)
-
Python
from math import prod def A091674(n): return 365**(n-1)-prod(365-i for i in range(1,n)) # Chai Wah Wu, Jan 22 2025
Formula
Q(n) = (1 - Product_{i=1..n-1} (1-i/365))*365^(n-1).
Extensions
More terms from Robert G. Wilson v, Feb 05 2004
Comments