cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091685 Sieve out 6n+1 and 6n-1.

Original entry on oeis.org

0, 1, 0, 0, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 0, 0, 23, 0, 25, 0, 0, 0, 29, 0, 31, 0, 0, 0, 35, 0, 37, 0, 0, 0, 41, 0, 43, 0, 0, 0, 47, 0, 49, 0, 0, 0, 53, 0, 55, 0, 0, 0, 59, 0, 61, 0, 0, 0, 65, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 77, 0, 79, 0, 0, 0, 83, 0, 85, 0, 0, 0, 89, 0
Offset: 0

Views

Author

Paul Barry, Jan 28 2004

Keywords

Comments

Completely multiplicative with a(2) = a(3) = 0, a(p) = p otherwise. - David W. Wilson, Jun 12 2005

Crossrefs

Cf. A007310 (nonzero terms), A047229 (positions of zeros), A054500.

Programs

  • Mathematica
    Table[n Boole[Or[# == 1, # == 5] &@ Mod[n, 6]], {n, 0, 90}] (* or *)
    CoefficientList[Series[x (x^2 + 1) (x^8 - x^6 + 6 x^4 - x^2 + 1)/((x - 1)^2*(1 + x)^2*(1 + x + x^2)^2*(x^2 - x + 1)^2), {x, 0, 90}], x] (* Michael De Vlieger, Jul 24 2017 *)
  • PARI
    a(n)=if(gcd(n,6)==1,n,0) \\ Charles R Greathouse IV, Jun 28 2015
    
  • Python
    from sympy import gcd
    def a(n): return n if gcd(n, 6) == 1 else 0
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 26 2017
  • Scheme
    (define (A091685 n) (if (or (even? n) (zero? (modulo n 3))) 0 n)) ;; Antti Karttunen, Jul 24 2017
    

Formula

a(n) = -Product_{k=0..5} Sum_{j=1..n} w(6)^(kj), w(6) = e^(2*Pi*i/6), i = sqrt(-1).
G.f.: x*(x^2+1)*(x^8-x^6+6*x^4-x^2+1) / ( (x-1)^2 *(1+x)^2 *(1+x+x^2)^2 *(x^2-x+1)^2 ). - R. J. Mathar, Feb 14 2015
From Amiram Eldar, Dec 18 2023: (Start)
Dirichlet g.f.: zeta(s-1) * (1 - 1/2^(s-1)) * (1 - 1/3^(s-1)).
Sum_{k=1..n} a(k) ~ n^2/6. (End)