cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091712 a(n)=6(2n-4)!/((n-2)!n!), if n>2. a(0)=1,a(1)=a(2)=2.

Original entry on oeis.org

1, 2, 2, 2, 3, 6, 14, 36, 99, 286, 858, 2652, 8398, 27132, 89148, 297160, 1002915, 3421710, 11785890, 40940460, 143291610, 504932340, 1790214660, 6382504440, 22870640910, 82334307276, 297670187844, 1080432533656, 3935861372604
Offset: 0

Views

Author

Michael Somos, Jan 31 2004

Keywords

Crossrefs

A007054(n)=a(n+2), if n>0.
Essentially the same as A007054.

Programs

  • PARI
    a(n)=if(n<3,(n>=0)+(n>0),6*(2*n-4)!/n!/(n-2)!)
    
  • PARI
    a(n)=if(n<0,0,polcoeff(((1+10*x-2*x^2)+(1-4*x)*sqrt(1-4*x+x*O(x^n)))/2,n))
    
  • PARI
    a(n)=if(n<=0,n==0,polcoeff(subst((1-x)*(1+x)^3,x,serreverse(x-x^2+x*O(x^n))),n))

Formula

G.f.: ((1+10x-2x^2)+(1-4x)^(3/2))/2. a(n)=6(2n-4)!/((n-2)!n!), if n>2. a(n)=a(n-1)(4n-10)/n, if n>3.
G.f. A(x) = (2c(x)-1)^3/c(x)^4 = (1-c(x)x)(1+c(x)x)^3, where c(x) = g.f. for Catalan numbers A000108.