A091752 Generalized Stirling2 array (-1,2)S2. Irregular triangle a(n, m) for n >= 1 and 2 <= m <= 2*n.
1, 2, -2, 1, 40, -40, 20, -6, 1, 2240, -2240, 1120, -360, 80, -12, 1, 246400, -246400, 123200, -40320, 9520, -1680, 220, -20, 1, 44844800, -44844800, 22422400, -7392000, 1786400, -332640, 48720, -5600, 490, -30, 1, 12197785600, -12197785600, 6098892800, -2018016000, 493292800
Offset: 1
Examples
Triangle starts: {1}, {2, -2, 1}, {40, -40, 20, -6, 1}, {2240, -2240, 1120, -360, 80, -12, 1}, {246400, -246400, 123200, -40320, 9520, -1680, 220, -20, 1}.
Links
- Leonard Carlitz, On Arrays of Numbers, Am. J. Math., 54,4 (1932) 739-752.
- Wolfdieter Lang, First 6 rows.
Crossrefs
Programs
-
Mathematica
w[n_, k_] := (Gamma[n-k/3] Gamma[1/3+n-k/3])/(Gamma[1/3-k/3] Gamma[-k/3]); T[n_, k_] := 9^n Sum[(-1)^(k - j) w[n, j]/((k - j)! j!), {j, 1, k}]; Table[Round[T[n,k]], {n,1,6}, {k, 2, 2 n}] (* Peter Luschny, Feb 05 2020 *)
Formula
a(n, m) = (((-1)^m)/m!)*Sum_{p=2..m} (-1)^p*binomial(m, p)*Product_{j=1..n} fallfac(p-3*(j-1), 2), n >= 1, 2 <= m <= 2*n, otherwise 0. From eq. (12) of the Blasiak et al. reference (see A078740) with r=-1, s=2, k=m.
Recurrence: a(n, m) = Sum_{p=0..2} binomial(2, p)*fallfac(-3*(n-1)+m-p, 2-p)*a(n-1, m-p), n >= 2, 2 <= m <= 2*n, a(1, 2) = 1, otherwise 0. Rewritten from eq. (19) of the Schork reference (see A078740) with r = -1, s = 2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).
Recurrence (Carlitz): a(n m) = a(n-1, m-2) - 2*(3*n - (m +2))*a(n-1, m-1) + (3*n - (m + 3))*(3*n - (m + 2))*a(n-1, m), for n >= 2, m >= 1, and a(n, m) = 0 if m <= 1 or m > 2*n, and a(1, 2) = 1. - Wolfdieter Lang, Dec 16 2019
From Werner Schulte, Jan 29 2020: (Start)
a(n, m) = T(3*n - m - 1, m - 2), for n > = 1 and m = 2, 3, ..., 2*n, with the irregular triangle defined by (-1)^n*exp(x^3/3)*(d/dx)^n exp(-x^3/3) = RT(n, x) = Sum_{k=0..2*n} T(n, k)*x^k, for n >= 0. For T(n, k) see A331816.
The recurrence RT(n, x) = x^2*RT(n-1, x) - (d/dx)RT(n-1, x), n >= 1, with RT(0, x) = 1, implies the T recurrence T(n, k) = T(n-1, k-2) - (k+1)*T(n-1, k+1), for n >= 1, with T(0, 0) = 1, and T(n, m) = 0 for m < 0 and m > 2*n. Also, by induction over n: RT(n, x) = x^2*RT(n-1, x) - 2*(n-1)*x*RT(n-2, x) + (n-1)*(n-2)*RT(n-3, x), using the former recurrence and inserting the derivatives. This translates to an obvious further recurrence for the irregular triangle T. It is used in order to prove the Carlitz recurrence for the index shifted aHat(n, m) = a(n+1, m + 2).
The e.g.f. of the irregular triangle, that is of the row polynomials RT, is E(t, x) = exp((x^3 - (x - t)^3)/3). See the comment above for a proof (setting s=2 there).
The explicit form is a(n, m) = (-1)^m*(3*n - m - 1)!/(3^(n-1)*(n-1)!)*Sum_{j=0..floor((m-2)/3)} (-1)^j*binomial(n-1, j)*binomial(3*(n-1-j), m -2 - 3*j), for n >= 1, and 2 <= m <= 2*n.
(End)
T(n, k) = 9^n*Sum_{j=1..k} (-1)^(k-j)*w(n,j)/((k-j)!*j!) where w(n,k) = (Gamma(n-k/3)*Gamma((1-k)/3+n))/(Gamma((1-k)/3)*Gamma(-k/3)). - Peter Luschny, Feb 05 2020
Comments