cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091769 Poincaré series [or Poincare series] (or Molien series) for a certain six-fold wreath product P_6.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 16, 19, 32, 35, 55, 67, 95, 117, 166, 199, 276, 339, 449, 555, 731, 889, 1154, 1413, 1794, 2193, 2764, 3347, 4181, 5058, 6233, 7519, 9208, 11027, 13411, 16015, 19307, 22970, 27538, 32582, 38851, 45805, 54265, 63747, 75170, 87896, 103179
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2004

Keywords

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004, p. 203.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x+x^2-x^3+x^4-x^5+x^6-x^7+x^8-x^9+x^10) * (1-2*x+x^2+ x^5-x^6+x^10-x^11+2*x^12-2*x^13+x^14-x^15+x^16+x^17-x^18+x^19-x^21+2*x^22 - 2*x^23+3*x^24-2*x^25+2*x^26-x^27+x^29-x^30 +x^31+x^32-x^33+x^34-2*x^35+2*x^36 - x^37+x^38-x^42+x^43+x^46-2*x^47+x^48) / ((1-x)^3*(1-x^3)*(1-x^4)*(1-x^6)*(1- x^8)*(1-x^9)*(1-x^12)*(1-x^10)*(1-x^15)*(1-x^18)), {x,0,60}], x] (* G. C. Greubel, Jan 31 2020 *)

Formula

G.f.: ( x^75 + x^70 + x^68 + x^67 + x^66 + 2*x^65 + 2*x^64 + 2*x^63 + 3*x^62 + 4*x^61 + 4*x^60 + 5*x^59 + 5*x^58 + 6*x^57 + 7*x^56 + 8*x^55 + 10*x^54 + 10*x^53 + 11*x^52 + 13*x^51 + 14*x^50 + 15*x^49 + 17*x^48 + 18*x^47 + 19*x^46 + 20*x^45 + 21*x^44 + 22*x^43 + 23*x^42 + 23*x^41 + 24*x^40 + 23*x^39 + 24*x^38 + 24*x^37 + 23*x^36 + 24*x^35 + 23*x^34 + 23*x^33 + 22*x^32 + 21*x^31 + 20*x^30 + 19*x^29 + 18*x^28 + 17*x^27 + 15*x^26 + 14*x^25 + 13*x^24 + 11*x^23 + 10*x^22 + 10*x^21 + 8*x^20 + 7*x^19 + 6*x^18 + 5*x^17 + 5*x^16 + 4*x^15 + 4*x^14 + 3*x^13 + 2*x^12 + 2*x^11 + 2*x^10 + x^9 + x^8 + x^7 + x^5 + 1 ) / ( (1 - x^2)*(1- x^3)*(1 - x^4)*(1 - x^6)^2*( 1- x^8)*(1 - x^9)*(1 - x^12)^2 *(1 - x^10)*(1 - x^15)*(1 - x^18)).