cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A140076 Pierce expansion of the cube root of 1/2.

Original entry on oeis.org

1, 4, 5, 7, 8, 18, 384, 7958, 14304, 16623, 18610, 20685, 72923, 883177, 1516692, 2493788, 2504069, 22881179, 110219466, 2241255405, 34982468090, 64356019489, 110512265214, 1142808349967, 3550630472116, 5238523454726, 7129035664265
Offset: 1

Views

Author

Gerard P. Michon, Jun 01 2008

Keywords

Comments

2^(-1/3) = 1-1/4(1-1/5(1-1/7(1-1/8(1-1/18(1-1/384(...))))))

Examples

			a(1) is 1 because the floor of 2^(1/3) is 1.
a(2)=4 because 1/(1-2^(-1/3)) is 4.8473221...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 80; x[1] = 2^(-1/3); a[n_] := a[n] = Floor[1/x[n]]; x[n_] := x[n] = 1 - a[n-1]*x[n-1]; Table[a[n], {n, 1, 27}] (* Jean-François Alcover, Dec 12 2011 *)
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2^(-1/3), 7!], 25] (* G. C. Greubel, Nov 14 2016 *)

Formula

Starting with x(1)=2^(-1/3), a(n) = floor(1/x(n)) and x(n+1) = 1-a(n)x(n).
Showing 1-1 of 1 results.