A091862 a(n) = 1 if the sum of all exponents of the prime-factorization of n has no carries when summed in base 2, or a(n) = 0 if there are any carries.
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0
Offset: 1
Examples
a(12) = 1 because 12 = 2^2 *3^1 and, in base 2, 2 = '10', 1 = '1' and '10' and '1' have their ones in different positions. But a(24) = 0 because 24 = 2^3 *3^1 and in base 2 3 = '11', 1 = '1', which both share a rightmost one.
Links
Crossrefs
Programs
-
Mathematica
f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; a[n_] := Boole[UnsameQ @@ Flatten[f /@ FactorInteger[n][[;; , 2]]]]; Array[a, 100] (* Amiram Eldar, Dec 23 2023 *)
-
PARI
a(n) = {my(e = factor(n)[,2], b = 0); for(i=1, #e, b = bitor(b, e[i])); n == 1 || b == vecsum(e);} \\ Amiram Eldar, Dec 23 2023
Formula
If A268374(n) = 0, then a(n) = 1, 0 otherwise. - Antti Karttunen, Nov 23 2017
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
Comments