A091885 Triangle T(n,k) defined by the generating function cosh(sqrt(y)*arcsin(x)) + sqrt(y)*sinh(sqrt(y)*arcsin(x)) - 1 = Sum_{n>=1} Sum_{k=1..n} T(n,k)*y^k *x^n/n!.
1, 1, 1, 1, 4, 1, 9, 10, 1, 64, 20, 1, 225, 259, 35, 1, 2304, 784, 56, 1, 11025, 12916, 1974, 84, 1, 147456, 52480, 4368, 120, 1, 893025, 1057221, 172810, 8778, 165, 1, 14745600, 5395456, 489280, 16368, 220, 1, 108056025, 128816766, 21967231, 1234948, 28743
Offset: 1
Examples
Triangle starts: 1; 1; 1, 1; 4, 1; 9, 10, 1; 64, 20, 1; 225, 259, 35, 1;
Programs
-
Maple
G:=cosh(sqrt(y)*arcsin(x))+sqrt(y)*sinh(sqrt(y)*arcsin(x))-1: Gser:=simplify(series(G,x=0,15)): for n from 1 to 13 do P[n]:=sort(expand(n!*coeff(Gser,x,n))) od: for n from 1 to 13 do seq(coeff(P[n],y,k),k=1..ceil(n/2)) od; # yields sequence in triangular form # Emeric Deutsch, Jul 28 2006
-
Mathematica
m = 14; (* number of rows *) T = Rest /@ Rest[CoefficientList[#, y]& /@ (CoefficientList[Cosh[Sqrt[y]* ArcSin[x]] + Sqrt[y]*Sinh[Sqrt[y]*ArcSin[x]] - 1 + O[x]^(m + 1), x]* Range[0, m]! // Simplify[#, y > 0]&)]; Flatten[T] (* Jean-François Alcover, Sep 27 2021 *)
Formula
E.g.f.: cosh(sqrt(y)*arcsin(x))+sqrt(y)*sinh(sqrt(y)*arcsin(x))-1.
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
Comments