cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091885 Triangle T(n,k) defined by the generating function cosh(sqrt(y)*arcsin(x)) + sqrt(y)*sinh(sqrt(y)*arcsin(x)) - 1 = Sum_{n>=1} Sum_{k=1..n} T(n,k)*y^k *x^n/n!.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 10, 1, 64, 20, 1, 225, 259, 35, 1, 2304, 784, 56, 1, 11025, 12916, 1974, 84, 1, 147456, 52480, 4368, 120, 1, 893025, 1057221, 172810, 8778, 165, 1, 14745600, 5395456, 489280, 16368, 220, 1, 108056025, 128816766, 21967231, 1234948, 28743
Offset: 1

Views

Author

Karol A. Penson, Feb 08 2004

Keywords

Comments

Row sums are equal to A006228(n). This is sequence A121408 without the intertwining zeros. - Emeric Deutsch, Jul 28 2006
This number triangle corresponds to the coefficients of the polynomial of the denominator of Fourier cosine coefficients for functions of the form sin(x)^(2*k) for integer n. For example (k=5), evaluating Integral_{x=-Pi..Pi} cos(n*x)*sin(x)^10 dx, we have -7257600*sin(n*Pi)/(-14745600*n + 5395456*n^3 - 489280*n^5 + 16368*n^7 - 220*n^9 + n^11); note the sequence of the coefficients of the polynomial of the denominator: -14745600, 5395456, -489280, 16368, -220, 1. - John M. Campbell, May 28 2011

Examples

			Triangle starts:
    1;
    1;
    1,   1;
    4,   1;
    9,  10,   1;
   64,  20,   1;
  225, 259,  35,   1;
		

Crossrefs

Cf. A006228.
Cf. A121408.

Programs

  • Maple
    G:=cosh(sqrt(y)*arcsin(x))+sqrt(y)*sinh(sqrt(y)*arcsin(x))-1: Gser:=simplify(series(G,x=0,15)): for n from 1 to 13 do P[n]:=sort(expand(n!*coeff(Gser,x,n))) od: for n from 1 to 13 do seq(coeff(P[n],y,k),k=1..ceil(n/2)) od; # yields sequence in triangular form # Emeric Deutsch, Jul 28 2006
  • Mathematica
    m = 14; (* number of rows *)
    T = Rest /@ Rest[CoefficientList[#, y]& /@ (CoefficientList[Cosh[Sqrt[y]* ArcSin[x]] + Sqrt[y]*Sinh[Sqrt[y]*ArcSin[x]] - 1  + O[x]^(m + 1), x]* Range[0, m]! // Simplify[#, y > 0]&)];
    Flatten[T] (* Jean-François Alcover, Sep 27 2021 *)

Formula

E.g.f.: cosh(sqrt(y)*arcsin(x))+sqrt(y)*sinh(sqrt(y)*arcsin(x))-1.

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004