A091905
Expansion of (1-4x)/((1+4x)(1-8x)).
Original entry on oeis.org
1, 0, 32, 128, 1536, 10240, 90112, 688128, 5636096, 44564480, 358612992, 2860515328, 22917677056, 183207198720, 1466194460672, 11727408201728, 93827855548416, 750588484648960, 6004845316145152, 48038212773347328
Offset: 0
A099138
a(n) = 6^(n-1)*J(n), where J(n) = A001045(n).
Original entry on oeis.org
0, 1, 6, 108, 1080, 14256, 163296, 2006208, 23794560, 287214336, 3436494336, 41298398208, 495217981440, 5944792559616, 71324450021376, 855971764420608, 10271190988062720, 123257112966660096, 1479068428940476416
Offset: 0
-
[(12^n - (-6)^n)/18: n in [0..40]]; // G. C. Greubel, Feb 18 2023
-
LinearRecurrence[{6,72}, {0,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
-
[(12^n - (-6)^n)/18 for n in range(41)] # G. C. Greubel, Feb 18 2023
A159277
Ways to write the identity as a product of n 3-cycles in symmetric group S_4.
Original entry on oeis.org
1, 0, 8, 32, 384, 2560, 22528, 172032, 1409024, 11141120, 89653248, 715128832, 5729419264, 45801799680, 366548615168, 2931852050432, 23456963887104, 187647121162240, 1501211329036288, 12009553193336832, 96076975302508544
Offset: 0
Showing 1-3 of 3 results.
Comments