cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A091918 Inverse of number triangle A091917.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 3, 3, 1, 16, 4, 6, 4, 1, 32, 5, 10, 10, 5, 1, 64, 6, 15, 20, 15, 6, 1, 128, 7, 21, 35, 35, 21, 7, 1, 256, 8, 28, 56, 70, 56, 28, 8, 1, 512, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1024, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 2048, 11, 55, 165, 330, 462, 462, 330
Offset: 0

Views

Author

Paul Barry, Feb 13 2004

Keywords

Comments

Essentially, Pascal's triangle A007318 with first column of 1's replaced by 2^n Row sums are A000225(n+1). Diagonal sums are A000225(n) + A000045(n).

Crossrefs

Cf. A103451.

Formula

Binomial transform of triangle A103451: (1; 1,1; 1,0,1; 1,0,0,1; ...). - Gary W. Adamson, Aug 08 2007

A140574 Signed Pascal triangle with central coefficients set to zero.

Original entry on oeis.org

0, -1, 1, -1, 0, -1, -1, 0, 0, 1, -1, 4, 0, 4, -1, -1, 5, 0, 0, -5, 1, -1, 6, -15, 0, -15, 6, -1, -1, 7, -21, 0, 0, 21, -7, 1, -1, 8, -28, 56, 0, 56, -28, 8, -1, -1, 9, -36, 84, 0, 0, -84, 36, -9, 1, -1, 10, -45, 120, -210, 0, -210, 120, -45, 10, -1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jul 05 2008

Keywords

Comments

Row sums are 0, 0, -2, 0, 6, 0, -20, 0, 70, 0, -252, ...

Examples

			0;
-1, 1;
-1, 0, -1;
-1, 0, 0, 1;
-1, 4, 0, 4, -1;
-1, 5, 0, 0, -5,1;
-1, 6, -15, 0, -15, 6, -1;
-1, 7, -21, 0, 0, 21, -7, 1;
-1, 8, -28, 56, 0,56, -28, 8, -1;
-1, 9, -36, 84, 0, 0, -84, 36, -9, 1;
-1, 10, -45, 120, -210, 0, -210, 120, -45, 10, -1;
		

Crossrefs

Programs

  • Maple
    A140574 := proc(n,k)
            if abs(k-n/2) < 1 and not n= 1 then
                    0;
            else
            (-1)^(k+1)*binomial(n,k) ;
            end if;
    end proc:
    seq(seq(A140574(n,m),m=0..n),n=0..14) ; # R. J. Mathar, Nov 10 2011
  • Mathematica
    Clear[p, f, x, n] f[x_, n_] := (-1)^ Floor[n/2]*If [Mod[n, 2] == 1, Binomial[n, Floor[n/2]]*x^( Floor[n/2]) - Binomial[n, Floor[n/2] + 1]*x^(Floor[n/2] + 1), Binomial[n, Floor[n/2]]*x^(Floor[n/2])]; p[x, 0] = 0; p[x, 1] = 1 - x; p[x_, n_] := p[x, n] = f[x, n] - (1 - x)^n; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%]

Formula

t(n,m) = (-1)^(m+1)*binomial(n,m) if n=1 or abs(m-n/2)>=1, otherwise t(n,m)=0.

Extensions

Adapted offset and terms to the example. - R. J. Mathar, Nov 10 2011

A140575 Triangle read by rows: the coefficient of [x^k] of the polynomial 1-(x-1)^n in row n and column k, 0<=k

Original entry on oeis.org

0, 2, -1, 0, 2, -1, 2, -3, 3, -1, 0, 4, -6, 4, -1, 2, -5, 10, -10, 5, -1, 0, 6, -15, 20, -15, 6, -1, 2, -7, 21, -35, 35, -21, 7, -1, 0, 8, -28, 56, -70, 56, -28, 8, -1, 2, -9, 36, -84, 126, -126, 84, -36, 9, -1, 0, 10, -45, 120, -210, 252, -210, 120, -45, 10, -1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jul 05 2008

Keywords

Comments

Row sums are: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...;
This is the Pascal Triangle A007318 with alternating signs and the leading column of 1's replaced alternatingly by 0 and 2. - R. J. Mathar, Sep 09 2013
With T(0,0) = 1, this is (2, -2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (-1, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 24 2015
G.f.: (1+2*x-x^2-2*x*y+x^2*y)/((-1+x)*(-x+x*y-1)) -1 - R. J. Mathar, Aug 12 2015

Examples

			0;
2, -1;
0, 2, -1;
2, -3, 3, -1;
0, 4, -6, 4, -1;
2, -5, 10, -10, 5, -1;
0, 6, -15, 20, -15, 6, -1;
2, -7, 21, -35, 35, -21, 7, -1;
0, 8, -28,56, -70, 56, -28, 8, -1;
2, -9, 36, -84, 126, -126, 84, -36, 9, -1;
0, 10, -45, 120, -210, 252, -210, 120, -45, 10, -1;
		

Crossrefs

Cf. A091917.

Programs

  • Mathematica
    Clear[p] p[x, 0] = 1; p[x, 1] = x - 1; p[x_, n_] := x^n*(1/x^n - (1 - 1/x)^n); a = Table[ExpandAll[p[x, n]], {n, 0, 10}]; b = Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]; Flatten[b]

Formula

T(n,k) = T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = 0, T(1,0) = 2, T(1,1) = -1, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, May 24 2015
Showing 1-3 of 3 results.