A091918
Inverse of number triangle A091917.
Original entry on oeis.org
1, 2, 1, 4, 2, 1, 8, 3, 3, 1, 16, 4, 6, 4, 1, 32, 5, 10, 10, 5, 1, 64, 6, 15, 20, 15, 6, 1, 128, 7, 21, 35, 35, 21, 7, 1, 256, 8, 28, 56, 70, 56, 28, 8, 1, 512, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1024, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 2048, 11, 55, 165, 330, 462, 462, 330
Offset: 0
A140574
Signed Pascal triangle with central coefficients set to zero.
Original entry on oeis.org
0, -1, 1, -1, 0, -1, -1, 0, 0, 1, -1, 4, 0, 4, -1, -1, 5, 0, 0, -5, 1, -1, 6, -15, 0, -15, 6, -1, -1, 7, -21, 0, 0, 21, -7, 1, -1, 8, -28, 56, 0, 56, -28, 8, -1, -1, 9, -36, 84, 0, 0, -84, 36, -9, 1, -1, 10, -45, 120, -210, 0, -210, 120, -45, 10, -1
Offset: 0
0;
-1, 1;
-1, 0, -1;
-1, 0, 0, 1;
-1, 4, 0, 4, -1;
-1, 5, 0, 0, -5,1;
-1, 6, -15, 0, -15, 6, -1;
-1, 7, -21, 0, 0, 21, -7, 1;
-1, 8, -28, 56, 0,56, -28, 8, -1;
-1, 9, -36, 84, 0, 0, -84, 36, -9, 1;
-1, 10, -45, 120, -210, 0, -210, 120, -45, 10, -1;
-
A140574 := proc(n,k)
if abs(k-n/2) < 1 and not n= 1 then
0;
else
(-1)^(k+1)*binomial(n,k) ;
end if;
end proc:
seq(seq(A140574(n,m),m=0..n),n=0..14) ; # R. J. Mathar, Nov 10 2011
-
Clear[p, f, x, n] f[x_, n_] := (-1)^ Floor[n/2]*If [Mod[n, 2] == 1, Binomial[n, Floor[n/2]]*x^( Floor[n/2]) - Binomial[n, Floor[n/2] + 1]*x^(Floor[n/2] + 1), Binomial[n, Floor[n/2]]*x^(Floor[n/2])]; p[x, 0] = 0; p[x, 1] = 1 - x; p[x_, n_] := p[x, n] = f[x, n] - (1 - x)^n; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%]
Adapted offset and terms to the example. -
R. J. Mathar, Nov 10 2011
A140575
Triangle read by rows: the coefficient of [x^k] of the polynomial 1-(x-1)^n in row n and column k, 0<=k
Original entry on oeis.org
0, 2, -1, 0, 2, -1, 2, -3, 3, -1, 0, 4, -6, 4, -1, 2, -5, 10, -10, 5, -1, 0, 6, -15, 20, -15, 6, -1, 2, -7, 21, -35, 35, -21, 7, -1, 0, 8, -28, 56, -70, 56, -28, 8, -1, 2, -9, 36, -84, 126, -126, 84, -36, 9, -1, 0, 10, -45, 120, -210, 252, -210, 120, -45, 10, -1
Offset: 0
0;
2, -1;
0, 2, -1;
2, -3, 3, -1;
0, 4, -6, 4, -1;
2, -5, 10, -10, 5, -1;
0, 6, -15, 20, -15, 6, -1;
2, -7, 21, -35, 35, -21, 7, -1;
0, 8, -28,56, -70, 56, -28, 8, -1;
2, -9, 36, -84, 126, -126, 84, -36, 9, -1;
0, 10, -45, 120, -210, 252, -210, 120, -45, 10, -1;
-
Clear[p] p[x, 0] = 1; p[x, 1] = x - 1; p[x_, n_] := x^n*(1/x^n - (1 - 1/x)^n); a = Table[ExpandAll[p[x, n]], {n, 0, 10}]; b = Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]; Flatten[b]
Showing 1-3 of 3 results.
Comments