cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091936 Smallest prime between 2^n and 2^(n+1), having a minimal number of 1's in binary representation.

Original entry on oeis.org

2, 5, 11, 17, 37, 67, 131, 257, 521, 1033, 2053, 4099, 8209, 16417, 32771, 65537, 133121, 262147, 524353, 1048609, 2097169, 4194433, 8388617, 16777729, 33554467, 67239937, 134250497, 268435459, 536903681, 1073741827, 2147483713
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 14 2004

Keywords

Comments

A091935(n) = A000120(a(n)).
So far only a(25) and a(32) possess 4 1's in their binary representation.

Crossrefs

Programs

  • Mathematica
    NextPrim[ n_] := Block[ {k = n + 1}, While[ !PrimeQ[ k], k++ ]; k]; p = 2; Do[ c = Infinity; While[ p < 2^n, b = Count[ IntegerDigits[ p, 2], 1]; If[ c > b, c = b; q = p]; p = NextPrim[ p]; If[ c < 4, p = NextPrim[ 2^n]; Continue[ ]]]; Print[ q], {n, 2, 32}] (* Robert G. Wilson v, Feb 18 2004 *)
    b[ n_ ] := Min[ Select[ FromDigits[ #, 2 ] & /@ (Join[ {1}, #, {1} ] & /@ Permutations[ Join[ {1}, Table[ 0, {n - 2} ] ] ]), PrimeQ[ # ] & ] ]; c[ n_ ] := Min[ Select[ FromDigits[ #, 2 ] & /@ (Join[ {1}, #, {1} ] & /@ Permutations[ Join[ {1, 1}, Table[ 0, {n - 3} ] ] ]), PrimeQ[ # ] & ] ]; f[ n_ ] := If[ PrimeQ[ 2^n + 1 ], 2^n + 1, If[ PrimeQ[ b[ n ] ], b[ n ], c[ n ] ] ]; Table[ f[ n ], {n, 2, 32} ] (* Robert G. Wilson v *)
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def A091936(n):
        for i in range(n+1):
            q = 2**n
            for d in multiset_permutations('0'*(n-i)+'1'*i):
                p = q+int(''.join(d),2)
                if isprime(p):
                    return p # Chai Wah Wu, Apr 08 2020

Extensions

More terms from Robert G. Wilson v, Feb 18 2004