A181385 Maximal number that can be obtained by reversing n in an integer base.
0, 1, 2, 3, 4, 7, 9, 13, 16, 21, 25, 31, 36, 43, 49, 57, 64, 73, 81, 91, 100, 111, 121, 133, 144, 157, 169, 183, 196, 211, 225, 241, 256, 273, 289, 307, 324, 343, 361, 381, 400, 421, 441, 463, 484, 507, 529, 553, 576, 601, 625, 651, 676, 703, 729, 757, 784, 813, 841
Offset: 0
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, White Bishop Graph.
- Eric Weisstein's World of Mathematics, Lower Matching Number.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Mathematica
rev[x_, b_]:=FromDigits[Reverse[IntegerDigits[x, b]], b] Max /@ Table[Table[rev[x, b], {b, 2, x + 1}], {x, STARTPOINT, ENDPOINT}] Table[Piecewise[{{2, n == 2}}, 1/8 (3 - 3 (-1)^n + 2 n^2)], {n, 20}] (* Eric W. Weisstein, Dec 23 2024 *) Table[Piecewise[{{2, n == 2}}, Ceiling[n^2/2] - Floor[n^2/4]], {n, 20}] (* Eric W. Weisstein, Dec 23 2024 *) CoefficientList[Series[(-1 + x^2 - 2 x^4 + x^5)/((-1 + x)^3 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 23 2024 *) {1, 2} ~ Join ~ LinearRecurrence[{2, 0, -2, 1}, {3, 4, 7, 9}, 20] (* Eric W. Weisstein, Dec 23 2024 *)
-
PARI
a(n) = vecmax(apply(b -> fromdigits(Vecrev(digits(n,b)),b), [2..max(2,n+1)])) \\ Rémy Sigrist, Jan 29 2020
Formula
a(n) = ceiling(n^2/2) - floor(n^2/4) for n != 2. - Eric W. Weisstein, Dec 23 2024
a(n) = (3 - 3 (-1)^n + 2 n^2)/8 for n != 2. - Eric W. Weisstein, Dec 23 2024
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n > 6. - Eric W. Weisstein, Dec 23 2024
G.f.: x*(-1+x^2-2*x^4+x^5)/((-1+x)^3*(1+x)). - Eric W. Weisstein, Dec 23 2024
Extensions
a(0) = 0 prepended by Rémy Sigrist, Jan 29 2020
Comments