cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092077 Generalized Stirling2 array (8,2).

Original entry on oeis.org

1, 56, 16, 1, 10192, 4928, 776, 48, 1, 3872960, 2477440, 575680, 63360, 3536, 96, 1, 2517424000, 1940556800, 572868800, 86163840, 7326880, 364800, 10480, 160, 1, 2497284608000, 2210343116800, 773352966400, 143430604800, 15836206400, 1099612800, 49056960, 1398400, 24520, 240, 1
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

Crossrefs

The generalized (k, 2)-Stirling2 arrays are, for k=2, ..., 7: A078739, A078740, A090438, A091534, A091746 and A091747.
Cf. A091546, A091552 (first, resp. second column). A091757 (row sums). A091758 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := ((-1)^k/k!) Sum[(-1)^p Binomial[k, p] Product[FactorialPower[ p + 6(j-1), 2], {j, 1, n}], {p, 2, k}];
    Table[a[n, k], {n, 1, 6}, {k, 2, 2n}] // Flatten (* Jean-François Alcover, Feb 28 2020 *)

Formula

a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+6*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=8, s=2.
Recursion: a(n, k) = sum(binomial(2, p)*fallfac(6*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=8, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).