A092113 Triangle read by rows: T(n,k) is the number of stacks of n pancakes requiring k = 0, ..., A058986(n) flips to sort.
1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 11, 3, 1, 4, 12, 35, 48, 20, 1, 5, 20, 79, 199, 281, 133, 2, 1, 6, 30, 149, 543, 1357, 1903, 1016, 35, 1, 7, 42, 251, 1191, 4281, 10561, 15011, 8520, 455, 1, 8, 56, 391, 2278, 10666, 38015, 93585, 132697, 79379, 5804, 1, 9, 72, 575
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 2, 2, 1; 1, 3, 6, 11, 3; 1, 4, 12, 35, 48, 20; ... From _Jon E. Schoenfield_, Dec 16 2021: (Start) For n=3, the 3! = 6 permutations are {1,2,3}, {1,3,2}, {2,1,3}, {2,3,1}, {3,1,2}, and {3,2,1}. Of these, T(3,0)=1 permutation (namely, {1,2,3}) requires no prefix reversals (because it is already sorted); T(3,1)=2 permutations (namely, {2,1,3} and {3,2,1}) require one prefix reversal, e.g., {2,1,3} -> {1,2,3}; T(3,2)=2 permutations (namely, {2,3,1} and {3,1,2}) require two prefix reversals, e.g., {2,3,1} -> {3,2,1} -> {1,2,3}; and T(3,3)=1 permutation (namely, {1,3,2}) requires 3 prefix reversals: {1,3,2} -> {3,1,2} -> {2,1,3} -> {1,2,3}; thus, the terms in row n=3 are 1, 2, 2, 1. (End)
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..97 (terms 1..68 from Martin Renner)
Comments