A092185 a(n) = (5/6)*n^3+(5/2)*n^2+(8/3)*n.
0, 6, 22, 53, 104, 180, 286, 427, 608, 834, 1110, 1441, 1832, 2288, 2814, 3415, 4096, 4862, 5718, 6669, 7720, 8876, 10142, 11523, 13024, 14650, 16406, 18297, 20328, 22504, 24830, 27311, 29952, 32758, 35734, 38885, 42216, 45732, 49438, 53339, 57440, 61746, 66262
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Partial sums of A005891.
Programs
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{0,6,22,53},50] (* Harvey P. Dale, May 27 2012 *)
-
PARI
a(n)=(5/6)*n^3+(5/2)*n^2+(8/3)*n \\ Charles R Greathouse IV, Oct 18 2022
Formula
a(n)= +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). G.f.: x*(6-2*x+x^2)/(x-1)^4. - R. J. Mathar, Jun 21 2010