A092310 Sum of largest parts (counted with multiplicity) of all partitions of n into odd parts.
1, 2, 6, 7, 13, 20, 28, 34, 53, 71, 88, 117, 148, 188, 250, 301, 365, 472, 565, 688, 860, 1027, 1224, 1486, 1771, 2107, 2524, 2983, 3496, 4158, 4867, 5666, 6676, 7762, 9021, 10525, 12145, 14034, 16249, 18696, 21478, 24721, 28308, 32364, 37110, 42289
Offset: 1
Examples
Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6*1+1*3+2*3+1*5=20.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..2500
Programs
-
Mathematica
nmax = 50; Rest[CoefficientList[Series[Sum[(2*n - 1)*x^(2*n - 1)/(1 - x^(2*n - 1)) / Product[(1 - x^(2*k - 1)), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *)
Formula
G.f.: Sum((2*n-1)*x^(2*n-1)/(1-x^(2*n-1))/Product(1-x^(2*k-1), k = 1 .. n), n = 1 .. infinity).
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004