A092313 Sum of smallest parts (counted with multiplicity) of all partitions of n into odd parts.
1, 2, 6, 5, 12, 16, 21, 22, 43, 46, 60, 75, 92, 119, 164, 167, 220, 276, 320, 390, 491, 562, 665, 796, 949, 1109, 1342, 1530, 1804, 2144, 2442, 2843, 3342, 3837, 4471, 5147, 5894, 6780, 7841, 8910, 10204, 11718, 13282, 15168, 17337, 19594, 22225, 25210
Offset: 1
Examples
Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6*1+3*1+2*3+1*1=16.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..2500
Programs
-
Mathematica
nmax = 50; Rest[CoefficientList[Series[Sum[(2*n - 1)*x^(2*n - 1)/(1 - x^(2*n - 1)) / Product[(1 - x^(2*k - 1)), {k, n, nmax}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *)
Formula
G.f.: Sum((2*n-1)*x^(2*n-1)/(1-x^(2*n-1))/Product(1-x^(2*k-1), k = n .. infinity), n = 1 .. infinity).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (2*Pi*n^(1/4)). - Vaclav Kotesovec, Jul 07 2019
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004