A092314 Sum of smallest parts of all partitions of n into odd parts.
1, 1, 4, 2, 7, 6, 11, 8, 18, 16, 24, 23, 34, 36, 51, 48, 66, 74, 90, 98, 126, 137, 164, 182, 220, 247, 294, 324, 380, 434, 496, 556, 650, 728, 835, 938, 1068, 1204, 1372, 1531, 1736, 1956, 2198, 2462, 2784, 3104, 3482, 3890, 4358, 4864, 5441, 6048, 6748, 7516
Offset: 1
Examples
a(5)=7 because the partitions of 5 into odd parts are [5],[3,1,1] and [1,1,1,1,1] and the smallest parts add up to 5+1+1=7.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..2500
Crossrefs
Programs
-
Maple
g:=sum((2*n-1)*x^(2*n-1)/Product(1-x^(2*k-1),k=n..30),n=1..30): gser:=series(g,x=0,57): seq(coeff(gser,x^n),n=1..54); # Emeric Deutsch, Feb 24 2006
-
Mathematica
nmax = 50; Rest[CoefficientList[Series[Sum[(2*n - 1)*x^(2*n - 1) / Product[(1 - x^(2*k - 1)), {k, n, nmax}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *)
Formula
G.f.: Sum((2*n-1)*x^(2*n-1)/Product(1-x^(2*k-1), k = n .. infinity), n = 1 .. infinity).
a(n) ~ exp(Pi*sqrt(n/3)) / (4 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 07 2019
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
Comments