A092322 Sum of largest parts of all partitions of n into odd parts.
1, 1, 4, 4, 9, 12, 19, 24, 36, 48, 64, 83, 108, 140, 179, 224, 280, 352, 432, 532, 652, 795, 960, 1160, 1392, 1669, 1992, 2368, 2804, 3320, 3908, 4592, 5388, 6300, 7349, 8560, 9940, 11524, 13340, 15401, 17752, 20436, 23472, 26920, 30840, 35256, 40252, 45900
Offset: 1
Examples
a(5)=9 because the partitions of 5 into odd parts are [5],[3,1,1] and [1,1,1,1,1] and the largest parts add up to 5+3+1=9.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..2500
Programs
-
Maple
g:=sum((2*n-1)*x^(2*n-1)/Product(1-x^(2*k-1),k=1..n),n=1..30): gser:=series(g,x=0,50): seq(coeff(gser,x^n),n=1..48); # Emeric Deutsch, Feb 24 2006
-
Mathematica
nmax = 50; Rest[CoefficientList[Series[Sum[(2*n - 1)*x^(2*n - 1) / Product[(1 - x^(2*k - 1)), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *)
Formula
G.f.: Sum_{n>=1} (2*n-1)*x^(2*n-1)/Product_{k=1..n} (1-x^(2*k-1)).
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
Comments