A332095
Numbers m such that 0 <= m*tan(m) < 1, ordered by |m|.
Original entry on oeis.org
0, -3, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 312689, 1146408, 5419351, 10838702, -6167950454, -21053343141, -42106686282, -63160029423, -84213372564, -105266715705, -8958937768937, -17917875537874, -428224593349304, -856449186698608, -6134899525417045
Offset: 1
-
is_A332095(n)={tan(n)*n < 1 && n*tan(n) >= 0}
for(n=0,oo, n*abs(tan(n))<1 && print1(sign(tan(n))*n", "))
/* Much faster: apply to numerators of convergents of Pi the function check(n) which prints all nonzero k*n in the sequence and returns the largest such k, largest in magnitude, possibly negative. N.B.: stops when (k+1)n is not in the sequence, so e.g., n = 11 (in convergents of Pi/2) does not give 22 and 44! */
print1(0); apply( {check(n)=for(i=1,oo,abs(i*n*tan(i*n))<1||return(sign(tan(n))*(i-1)); print1(", "sign(tan(n*i))*i*n))}, contfracpnqn(c=contfrac(Pi),#c)[1,]) \\ M. F. Hasler, Oct 09 2020
A337249
Numbers k for which csc(k) > k.
Original entry on oeis.org
1, 3, 44, 710, 1420, 2130, 2840, 312689, 10838702, 6167950454, 21053343141, 63160029423, 105266715705
Offset: 1
csc(1) = 1.1884... so 1 is a term.
-
Select[Range[10^6], Csc[#] > # &] (* Amiram Eldar, Aug 21 2020 *)
-
isok(m) = 1/sin(m) > m; \\ Michel Marcus, Aug 27 2020
-
import math
i = 1
while True:
if 1 / math.sin(i) > i:
print(i)
i += 1
A337371
Integers k with abs(sin(k)) < 1/k.
Original entry on oeis.org
1, 3, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 312689, 1146408, 5419351, 10838702, 6167950454, 21053343141, 42106686282, 63160029423, 84213372564, 105266715705, 8958937768937, 17917875537874, 428224593349304, 856449186698608, 6134899525417045
Offset: 1
-
Select[Range[3200], Abs[Sin[#]] < 1/# &] (* Amiram Eldar, Aug 25 2020 *)
-
print1(1);apply( n-> forstep(n=n,oo,n,abs(sin(n))<1/n||return; print1(","n)), contfracpnqn(c=contfrac(Pi),#c)[1,]); \\ M. F. Hasler, Oct 09 2020
-
import numpy as np
for x in range(1, 10**9):
if np.abs(np.sin(x)) < 1/x:
print(x, end=", ")
A337248
Numbers k for which sec(k) > k.
Original entry on oeis.org
1, 11, 52174, 260515, 37362253, 42781604, 2685575996367
Offset: 1
sec(1) = 1.8508... so 1 is a term.
-
Select[Range[10^6], Sec[#] > # &] (* Amiram Eldar, Aug 21 2020 *)
-
isok(m) = 1/cos(m) > m; \\ Michel Marcus, Aug 27 2020
-
import math
i = 1
while True:
if 1 / math.cos(i) > i:
print(i)
i += 1
Showing 1-4 of 4 results.
Comments