A092339 Number of adjacent identical digits in the binary representation of n.
0, 0, 0, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 1, 2, 3, 3, 2, 1, 2, 1, 0, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 4, 3, 2, 3, 2, 1, 2, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 4, 3, 4, 5, 5, 4, 3, 4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 1, 0, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2
Offset: 0
Examples
60 in binary is 111100, it has 4 blocks of adjacent digits, so a(60)=4. Equally, 60's binary Gray code expansion is A003188(60)=34, 100010 in binary, which contains four zeros.
References
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 84.
Crossrefs
Cf. A005811.
Programs
-
PARI
a(n)=local(v); v=binary(n); sum(k=1, length(v)-1, v[k]==v[k+1])
-
PARI
a(n)=if(n<1,0,if(n%2==0,a(n/2)+(n>0&&(n/2)%2==0),a((n-1)/2)+((n-1)/2)%2))
-
Scheme
(define (A092339 n) (A080791 (A003188 n))) ;; Antti Karttunen, Jul 05 2013
Comments