cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092340 Prime numbers n such that n^2+2*n divides (Fibonacci(n^2) + Fibonacci(2*n)).

Original entry on oeis.org

7, 17, 107, 137, 197, 227, 347, 617, 827, 857, 1277, 1427, 1487, 1607, 1667, 1697, 1787, 1877, 1997, 2027, 2087, 2237, 2267, 2657, 2687, 2707, 3167, 3257, 3467, 3527, 3557, 3767, 3917, 4127, 4157, 4217, 4337, 4517, 4547, 4637, 4787, 4967, 5417, 5477
Offset: 1

Views

Author

Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 18 2004

Keywords

Comments

First disagrees with A181605 at n=26: this sequence contains 2707, but A181605 doesn't. Is this a supersequence of A181605? - Nathaniel Johnston, Jun 25 2011
See link for proof of this. - Robert Israel, Apr 13 2021

Crossrefs

Cf. A000045.
Cf. A181605. - Robert G. Wilson v, Nov 07 2010

Programs

  • Maple
    filter:= proc(n)
      local M,A;
      uses LinearAlgebra:-Modular;
      if not isprime(n) then return false fi;
      M:= Matrix(2,2,<<0,1>|<1,1>>,datatype=integer);
      A:= MatrixPower(n,M,n^2) + MatrixPower(n,M,2*n);
      if A[1,2] mod n <> 0 then return false fi;
      A:= MatrixPower(n+2,M,n^2) + MatrixPower(n+2,M,2*n);
      A[1,2] mod (n+2) = 0
    end proc:
    select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Apr 13 2021
  • Mathematica
    fQ[n_] := Mod[ Fibonacci[n^2] + Fibonacci[2 n], n^2 + 2 n] == 0; Select[ Prime@ Range@ 744, fQ] (* Robert G. Wilson v, Nov 07 2010 *)
  • PARI
    forprime (i=1,2000,if(Mod(fibonacci(i^2)+fibonacci(2*i),i^2+2*i)==0,print1(i,",")))

Extensions

Offset changed from 0 to 1 by Robert G. Wilson v, Nov 07 2010
More terms from Robert G. Wilson v, Nov 07 2010