A092340 Prime numbers n such that n^2+2*n divides (Fibonacci(n^2) + Fibonacci(2*n)).
7, 17, 107, 137, 197, 227, 347, 617, 827, 857, 1277, 1427, 1487, 1607, 1667, 1697, 1787, 1877, 1997, 2027, 2087, 2237, 2267, 2657, 2687, 2707, 3167, 3257, 3467, 3527, 3557, 3767, 3917, 4127, 4157, 4217, 4337, 4517, 4547, 4637, 4787, 4967, 5417, 5477
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 182 terms from Robert G. Wilson v)
- Robert Israel, Proof that A181605 is a subsequence of A092340
Crossrefs
Cf. A000045.
Cf. A181605. - Robert G. Wilson v, Nov 07 2010
Programs
-
Maple
filter:= proc(n) local M,A; uses LinearAlgebra:-Modular; if not isprime(n) then return false fi; M:= Matrix(2,2,<<0,1>|<1,1>>,datatype=integer); A:= MatrixPower(n,M,n^2) + MatrixPower(n,M,2*n); if A[1,2] mod n <> 0 then return false fi; A:= MatrixPower(n+2,M,n^2) + MatrixPower(n+2,M,2*n); A[1,2] mod (n+2) = 0 end proc: select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Apr 13 2021
-
Mathematica
fQ[n_] := Mod[ Fibonacci[n^2] + Fibonacci[2 n], n^2 + 2 n] == 0; Select[ Prime@ Range@ 744, fQ] (* Robert G. Wilson v, Nov 07 2010 *)
-
PARI
forprime (i=1,2000,if(Mod(fibonacci(i^2)+fibonacci(2*i),i^2+2*i)==0,print1(i,",")))
Extensions
Offset changed from 0 to 1 by Robert G. Wilson v, Nov 07 2010
More terms from Robert G. Wilson v, Nov 07 2010
Comments