cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092353 Expansion of (1+x^3)/((1-x)^2*(1-x^3)^2).

Original entry on oeis.org

1, 2, 3, 7, 11, 15, 24, 33, 42, 58, 74, 90, 115, 140, 165, 201, 237, 273, 322, 371, 420, 484, 548, 612, 693, 774, 855, 955, 1055, 1155, 1276, 1397, 1518, 1662, 1806, 1950, 2119, 2288, 2457, 2653, 2849, 3045, 3270, 3495, 3720, 3976, 4232, 4488, 4777, 5066, 5355, 5679
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Crossrefs

Cf. A005993.

Programs

  • Maple
    seq(add(floor(i/3)^2, i=1..n+3), n=0..60); # Ridouane Oudra, Oct 19 2019
  • Mathematica
    a[n_] := Sum[Floor[i/3]^2, {i,1,n+3}]; Table[a[n], {n, 0, 100}] (* Enrique Pérez Herrero, Mar 20 2012 *)
  • Sage
    def A092353():
        a, b, c, m = 0, 0, 0, 0
        while True:
            yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+c*(c+1)*(2*c+1)+6)//6
            m = m + 1 if m < 2 else 0
            if   m == 0: a += 1
            elif m == 1: b += 1
            elif m == 2: c += 1
    a = A092353()
    print([next(a) for  in range(52)]) # _Peter Luschny, May 04 2016

Formula

G.f.: (1+x^3)/((1-x)^2*(1-x^3)^2) = (1+x^3)/((1-x)^4*(1+x+x^2)^2).
a(n) = Sum(i=1..n+3, floor(i/3)^2). - Enrique Pérez Herrero, Mar 20 2012
a(n) = (1/2)*(-4*t^3 + (2n-7)*t^2 + (4n-1)*t +2n +2), where t = floor(n/3). - Ridouane Oudra, Oct 19 2019