cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A262612 Triangle read by rows T(n,k) in which column k lists the partial sums of the k-th column of triangle A236104.

Original entry on oeis.org

1, 5, 14, 1, 30, 2, 55, 6, 91, 10, 1, 140, 19, 2, 204, 28, 3, 285, 44, 7, 385, 60, 11, 1, 506, 85, 15, 2, 650, 110, 24, 3, 819, 146, 33, 4, 1015, 182, 42, 8, 1240, 231, 58, 12, 1, 1496, 280, 74, 16, 2, 1785, 344, 90, 20, 3, 2109, 408, 115, 29, 4, 2470, 489, 140, 38, 5, 2870, 570, 165, 47, 9, 3311, 670, 201, 56, 13, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 03 2015

Keywords

Comments

Alternating sum of row n equals A175254(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A175254(n), which is also the volume (or the total number of units cubes) in the first n levels of the stepped pyramid described in A245092.
Row n has length A003056(n) hence the first element of column k is in row A000217(k).

Examples

			Triangle begins:
     1;
     5;
    14,    1;
    30,    2;
    55,    6;
    91,   10,    1;
   140,   19,    2;
   204,   28,    3;
   285,   44,    7;
   385,   60,   11,    1;
   506,   85,   15,    2;
   650,  110,   24,    3;
   819,  146,   33,    4;
  1015,  182,   42,    8;
  1240,  231,   58,   12,    1;
  1496,  280,   74,   16,    2;
  1785,  344,   90,   20,    3;
  2109,  408,  115,   29,    4;
  2470,  489,  140,   38,    5;
  2870,  570,  165,   47,    9;
  3311,  670,  201,   56,   13,    1;
  3795,  770,  237,   72,   17,    2;
  4324,  891,  273,   88,   21,    3;
  4900, 1012,  322,  104,   25,    4;
  ...
For n = 6 we have that A175254(6) = [1] + [1 + 3] + [1 + 3 + 4] + [1 + 3 + 4 + 7] + [1 + 3 + 4 + 7 + 6] + [1 + 3 + 4 + 7 + 6 + 12] = 1 + 4 + 8 + 15 + 21 + 33 = 82. On the other hand the alternating sum of the 6th row of the triangle is 91 - 10 + 1 = 82, equaling A175254(6).
		

Crossrefs

Column 1 gives A000330, n >= 1. Column 2 is A005993. It appears that column 3 is A092353.

A287195 Independence and clique covering number of the n-triangular honeycomb acute knight graph.

Original entry on oeis.org

1, 3, 3, 5, 9, 9, 12, 18, 18, 22, 30, 30, 35, 45, 45, 51, 63, 63, 70, 84, 84, 92, 108, 108, 117, 135, 135, 145, 165, 165, 176, 198, 198, 210, 234, 234, 247, 273, 273, 287, 315, 315, 330, 360, 360, 376, 408, 408, 425, 459, 459, 477, 513, 513, 532, 570, 570
Offset: 1

Views

Author

Eric W. Weisstein, May 21 2017

Keywords

Comments

a(n) is also the length of row n in A244500.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 3, 3, 5, 9, 9, 12}, 50]
    Table[1/18 ((n + 3) (3 n + 2) - 2 (n + 3) Cos[2 n Pi/3] - 2 Sqrt[3] (n + 1) Sin[2 n Pi/3]), {n, 50}]
    Table[Piecewise[{{n (n + 3), Mod[n, 3] == 0}, {(n + 1) (n + 2), Mod[n, 3] == 1}, {(n + 1) (n + 4), Mod[n, 3] == 2}}]/6, {n, 50}]
  • PARI
    Vec(x*(1 + 2*x) / ((1 - x)^3*(1 + x + x^2)^2) + O(x^60)) \\ Colin Barker, Jul 15 2017

Formula

From Colin Barker, Jul 15 2017: (Start)
G.f.: x*(1 + 2*x) / ((1 - x)^3*(1 + x + x^2)^2).
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n>7. (End)
From Ridouane Oudra, Jun 23 2024: (Start)
a(n) = Sum_{i=1..n+3} (i mod 3)*floor(i/3);
a(n) = (1/2)*(n^2 + n + (n^2 - 5*n)*t -(6*n - 9)*t^2 + 9*t^3), where t = floor(n/3);
a(n) = A066377(n+1) - A092353(n). (End)
E.g.f.: exp(-x/2)*(exp(3*x/2)*(6 + 14*x + 3*x^2) - 2*(3 + x)*cos(sqrt(3)*x/2) - 2*sqrt(3)*(1 - x)*sin(sqrt(3)*x/2))/18. - Stefano Spezia, Jun 23 2024

A115265 Correlation triangle for floor((n+3)/3).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 4, 4, 4, 4, 2, 3, 4, 5, 7, 5, 4, 3, 3, 5, 6, 8, 8, 6, 5, 3, 3, 6, 7, 9, 11, 9, 7, 6, 3, 4, 6, 8, 12, 12, 12, 12, 8, 6, 4, 4, 7, 9, 13, 15, 15, 15, 13, 9, 7, 4
Offset: 0

Views

Author

Paul Barry, Jan 18 2006

Keywords

Comments

Row sums are A115266. Diagonal sums are A115267.
T(2n,n) is A092353. T(2n,n)-T(2n,n+1)=A087508(n+1).

Examples

			Triangle begins
1;
1,1;
1,2,1;
2,2,2,2;
2,3,3,3,2;
2,4,4,4,4,2;
3,4,5,7,5,4,3;
3,5,6,8,8,6,5,3;
3,6,7,9,11,9,7,6,3;
		

Programs

  • Mathematica
    T[n_, k_] := Sum[Boole[j <= k] * Floor[(k - j + 3)/3] * Boole[j <= n-k] * Floor[(n - k - j + 3)/3], {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 15 2017 *)

Formula

G.f.: (1+x+x^2)(1+xy+x^2*y^2)/((1-x^3)^2*(1-x^3*y^3)^2*(1-x^2*y)).
T(n, k) = sum{j=0..n, [j<=k]*floor((k-j+3)/3)*[j<=n-k]*floor((n-k-j+3)/3)}.
Showing 1-3 of 3 results.