cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A115266 Row sums of correlation triangle for floor((n+3)/3).

Original entry on oeis.org

1, 2, 4, 8, 13, 20, 31, 44, 61, 84, 111, 144, 186, 234, 291, 360, 438, 528, 634, 752, 886, 1040, 1210, 1400, 1615, 1850, 2110, 2400, 2715, 3060, 3441, 3852, 4299, 4788, 5313, 5880, 6496, 7154, 7861, 8624, 9436, 10304, 11236, 12224, 13276, 14400, 15588
Offset: 0

Views

Author

Paul Barry, Jan 18 2006

Keywords

Comments

Row sums of number triangle A115265.
Sum of the smallest parts in all the partitions of k into 3 parts such that 3 <= k <= n+3. - Wesley Ivan Hurt, Nov 03 2021
a(n) is the number of partitions of n into parts 1, 2, and 3, where there are two sorts of part 1 and 3 (see formula by Mamuka Jibladze). - Joerg Arndt, Apr 09 2025

Crossrefs

Cf. A115265.

Programs

  • Mathematica
    T[n_, k_] := Sum[Boole[j <= k] * Floor[(k - j + 3)/3] * Boole[j <= n - k] * Floor[(n - k - j + 3)/3], {j, 0, n}]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Jul 15 2017 *)
    LinearRecurrence[{2,0,0,-3,0,3,0,0,-2,1},{1,2,4,8,13,20,31,44,61,84},50] (* Harvey P. Dale, Nov 20 2021 *)

Formula

G.f.: (1+x+x^2)^2/((1-x^3)^4*(1-x^2)).
a(n) = Sum_{k=0..n} Sum_{j=0..n} [j<=k]*floor((k-j+3)/3)*[j<=n-k]*floor((n-k-j+3)/3).
From Wesley Ivan Hurt, Nov 03 2021: (Start)
a(n) = Sum_{m=1..n+3} Sum_{k=1..floor(m/3)} Sum_{i=k..floor((m-k)/2)} k.
a(n) = 2*a(n-1)-3*a(n-4)+3*a(n-6)-2*a(n-9)+a(n-10). (End)
G.f.: 1/((1-x)^2*(1-x^2)*(1-x^3)^2). - Mamuka Jibladze, Apr 09 2025
a(n) = (2*n^4 + 40*n^3 + 276*n^2 + 792*n + 837 + 27*(-1)^n - 32*(n+5)*(n mod 3))/864. - Hoang Xuan Thanh, Jun 11 2025
Showing 1-1 of 1 results.