cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092356 UO-sigma multiperfect numbers: n such that A069184(n)/n is an integer.

Original entry on oeis.org

1, 6, 60, 1080, 6552, 36720, 47520, 87360, 222768, 288288, 8173440, 49585536, 203558400, 683289600, 920387520, 4201148160, 25486965504, 556121548800, 1610457666048, 3633511924224, 4399770343643136, 6075071799091200, 9926754576979968, 27220195859304960, 66800080530869760, 629720915643477504
Offset: 1

Views

Author

Yasutoshi Kohmoto, Mar 20 2004

Keywords

Comments

The UO-sigma function is defined by UO-sigma(n) = A069184(n).
E.g., UO-sigma(2^4*7^2) = UnitarySigma(2^4)*sigma(7^2) = 17*57 = 969. So UO-sigma(n) = UnitarySigma(n) if n=2^r, or = sigma(n) if GCD(2,n)=1.
A UO-sigma perfect number satisfies UO-sigma(n) = k*n for some k.
The initial values of k are 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2. However, I conjecture that every positive integer >= 2 must appear.
Some interesting subsequences exist: s(n) := {a(1), a(4), a(9), a(11), ...} has the property that s(n-1)|s(n): 2*3, 2^3*3^2*7*13, 2^5*3^2*7*13*11, 2^7*3^2*7*11*13*43, 2^8*3^2*7*11*13*43*257, ...

Examples

			Sequence begins: 2*3, 2^2*3*5, 2^3*3^3*5, 2^3*3^2*7*13, 2^4*3^3*5*17, 2^5*3^3*5*11, 2^6*3*5*7*13, 2^4*3^2*7*13*17, 2^5*3^2*7*13*11, 2^7*3^3*5*11*43, 2^7*3^2*7*11*13*43, ...
		

Crossrefs

Cf. A091321.

Programs

  • PARI
    is(n)=my(e=valuation(n, 2)); (sigma(n>>e) * if(e, 2^e+1, 1)) % n == 0 \\ Charles R Greathouse IV, Apr 10 2014

Extensions

Corrected by Andrew Lelechenko, Apr 10 2014