A092422 Triangle, read by rows, where T(n,k) equals the k-th term of the convolution of the (n-k)-th row with the (2k)-th Fibonacci polynomial (A011973).
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 7, 1, 1, 5, 14, 18, 11, 1, 1, 6, 21, 40, 36, 16, 1, 1, 7, 30, 72, 98, 66, 22, 1, 1, 8, 40, 119, 211, 214, 113, 29, 1, 1, 9, 52, 182, 398, 546, 428, 183, 37, 1, 1, 10, 65, 265, 692, 1170, 1278, 799, 283, 46, 1, 1, 11, 80, 368, 1123, 2286, 3104
Offset: 0
Examples
Even-numbered Fibonacci polynomials (cf. A011973) are: {1}, {1,1}, {1,3,1}, {1,5,6,1}, {1,7,15,10,1},... These terms are used to generate each row from the prior rows. For example, row 5 = {1(1), 1(1)+1(4), 1(1)+3(3)+1(4), 1(1)+6(2)+5(1), 1(1)+10(1), 1(1)}; row 6 = {1(1), 1(1)+1(5), 1(1)+3(4)+1(8), 1(1)+6(3)+5(4)+1(1), 1(1)+10(2)+15(1), 1(1)+15(1), 1(1)}. Rows begin: {1}, {1,1}, {1,2,1}, {1,3,4,1}, {1,4,8,7,1}, {1,5,14,18,11,1}, {1,6,21,40,36,16,1}, {1,7,30,72,98,66,22,1}, {1,8,40,119,211,214,113,29,1}, {1,9,52,182,398,546,428,183,37,1},...
Programs
-
PARI
T(n,k)=if(n
Formula
T(n, k) = sum_{j=0, min(k, n-k)} binomial(k+j, k-j)*T(n-k, j) with T(n, 0)=1.