cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092436 a(n) = 1/2 + (-1)^n*(1/2 - A010060(floor(n/2))).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1
Offset: 1

Views

Author

Benoit Cloitre, Mar 23 2004

Keywords

Comments

From Jeffrey Shallit, Mar 02 2022: (Start)
Also, the parity of the number of 2's in the bijective base-2 representation of n - 1; this is the base-2 representation using the digits {1,2} in place of {0,1}.
Also, solution of the equation a = 0 mu(a), where mu is the Thue-Morse morphism 0 -> 01, 1 -> 10. (End)

Crossrefs

Programs

  • Mathematica
    Flatten[ NestList[ Function[l, {Flatten[(l /. {0 -> {0, 1}, 1 -> {1, 0}})]}], {0}, 6]] (* Robert G. Wilson v, May 19 2005 *)
  • Python
    def A092436(n): return n.bit_count()&1^1 # Chai Wah Wu, Mar 03 2023

Formula

a(n) = 1-A010060(n). - Chai Wah Wu, Mar 03 2023