A092440 a(n) = 2^(2n+1) - 2^(n+1) + 1.
1, 5, 25, 113, 481, 1985, 8065, 32513, 130561, 523265, 2095105, 8384513, 33546241, 134201345, 536838145, 2147418113, 8589803521, 34359476225, 137438429185, 549754765313, 2199021158401, 8796088827905, 35184363700225
Offset: 0
References
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Robert Price, Table of n, a(n) for n = 0..500
- J. Propp, Publications and Preprints
- J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Programs
-
Mathematica
Table[2^(2n + 1) - 2^(n + 1) + 1, {n, 0, 200}] (* Robert Price, May 04 2016 *)
-
PARI
a(n)=2^(2*n+1)-2^(n+1)+1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = 2^(2n+1) - 2^(n+1) + 1.
From Colin Barker, Nov 22 2012: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3).
G.f.: -(4*x^2-2*x+1)/((x-1)*(2*x-1)*(4*x-1)). (End)
Comments