A092482 Sequence contains no 3-term arithmetic progression, other than its initial terms 1, 2, 3.
1, 2, 3, 6, 7, 14, 15, 17, 18, 36, 37, 39, 40, 45, 46, 48, 49, 98, 99, 101, 102, 107, 108, 110, 111, 125, 126, 128, 129, 134, 135, 137, 138, 276, 277, 279, 280, 285, 286, 288, 289, 303, 304, 306, 307, 312, 313, 315, 316, 357, 358, 360, 361, 366, 367, 369, 370
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..8193 (first 512 terms by Jean-François Alcover)
- Eric Weisstein's World of Mathematics, Nonarithmetic Progression Sequence.
- Index entries related to non-averaging sequences
Programs
-
Mathematica
a[n_] := a[n] = If[n < 4, n, For[k = a[n - 1] + 1, True, k++, sp = SequencePosition[Append[Array[a, n - 1], k], {x_, _, y_, _, z_} /; y - x == z - y, 2]; If[sp == {{1, 3}}, Return[k]]]]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 512}] (* Comparing with data from conjectured formula: *) b[n_] := If[n < 4, n, 1 + 2^(Length[id = IntegerDigits[n - 2, 2]] - 1) + FromDigits[id, 3]]; Table[b[n], {n, 1, 512}] (* Jean-François Alcover, Jan 15 2019 *) (* Second [much faster] program: *) upto[m_] := Module[{n, v, i, j}, n = Max[m, 3]; v = Table[1, {n}]; For[i = 3, i <= n-1, i++, If[v[[i]] == 1, For[j = Max[1, 2i-n], j <= Min[2n-i, i-1], j++, If[v[[j]] == 1, v[[2i-j]] = 0]]]]; Position[v, 1] // Flatten]; upto[12000] (* Jean-François Alcover, Jan 16 2019, after David A. Corneth *)
-
PARI
upto(n) = n=max(n,3); v=vector(n, i, 1); for(i=3, n-1, if(v[i]==1, for(j = max(1, 2*i-n), min(2*n-i,i-1), c=2*i - j; if(v[j]==1, v[2*i-j]=0; )))); select(x -> x==1, v, 1) \\ David A. Corneth, Jan 15 2019
Formula
Extensions
Name clarified by Charles R Greathouse IV, Jan 30 2014
Comments