cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092482 Sequence contains no 3-term arithmetic progression, other than its initial terms 1, 2, 3.

Original entry on oeis.org

1, 2, 3, 6, 7, 14, 15, 17, 18, 36, 37, 39, 40, 45, 46, 48, 49, 98, 99, 101, 102, 107, 108, 110, 111, 125, 126, 128, 129, 134, 135, 137, 138, 276, 277, 279, 280, 285, 286, 288, 289, 303, 304, 306, 307, 312, 313, 315, 316, 357, 358, 360, 361, 366, 367, 369, 370
Offset: 1

Views

Author

Ralf Stephan, Apr 04 2004

Keywords

Comments

a(1)=1, a(2)=2, a(3)=3; a(n) is least k such that no three terms of a(1), a(2), ..., a(n-1), k form an arithmetic progression, except for the first triple (1,2,3).

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n < 4, n, For[k = a[n - 1] + 1, True, k++, sp = SequencePosition[Append[Array[a, n - 1], k], {x_, _, y_, _, z_} /; y - x == z - y, 2]; If[sp == {{1, 3}}, Return[k]]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 512}]
    (* Comparing with data from conjectured formula: *)
    b[n_] := If[n < 4, n, 1 + 2^(Length[id = IntegerDigits[n - 2, 2]] - 1) + FromDigits[id, 3]];
    Table[b[n], {n, 1, 512}] (* Jean-François Alcover, Jan 15 2019 *)
    (* Second [much faster] program: *)
    upto[m_] := Module[{n, v, i, j}, n = Max[m, 3]; v = Table[1, {n}]; For[i = 3, i <= n-1, i++, If[v[[i]] == 1, For[j = Max[1, 2i-n], j <= Min[2n-i, i-1], j++, If[v[[j]] == 1, v[[2i-j]] = 0]]]]; Position[v, 1] // Flatten]; upto[12000] (* Jean-François Alcover, Jan 16 2019, after David A. Corneth *)
  • PARI
    upto(n) = n=max(n,3); v=vector(n, i, 1); for(i=3, n-1, if(v[i]==1, for(j = max(1, 2*i-n), min(2*n-i,i-1), c=2*i - j; if(v[j]==1, v[2*i-j]=0; )))); select(x -> x==1, v, 1) \\ David A. Corneth, Jan 15 2019

Formula

For n > 2, a(n+2) = 1 + 2^floor(log_2(n)) + Sum_{k=1..n} (3^A007814(n) + 1)/2 = 1 + A053644(n) + A005836(n) (conjectured and checked up to n=512).

Extensions

Name clarified by Charles R Greathouse IV, Jan 30 2014